codeforce 1152C. Neko does Maths(欧几里得算法)

找到一个k使得a+k与b+k的最大公倍数lcm最小 

欧几里得算法:gcd(a,b) = gcd(b,a mod b)。

 gcd是b-a的除数。 让我们迭代b-a的所有除数q。 这也意味着a(modq)= b(modq)。 如果a(modq)= 0,我们可以使用k = 0。

否则,相应的k应为q-a(modq)。 最后,我们需要检查lcm(a + k,b + k)的值是否是迄今为止找到的最小值。

#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
ll a,b;

int main()
{
    ios::sync_with_stdio(false);
    cin>>a>>b;
    ll d=abs(a-b);
    ll ans=0;
    ll h=a/__gcd(a,b)*b;
    if(b==a){
        cout<<"0"<<endl;
        return 0;
    }
    else{
        ll k,v;
        for(int i=1;i*i<=d;i++){
            if(d % i != 0) continue;
            k=i;
            k=(k-(a%k))%k;//保证k为满足当前情况的最小值
            v= (a+k)/__gcd(a+k,b+k)*(b+k);
            if(v<h){
                h=v;
                ans=k;
            }
            if(v==h) ans=min(ans,k);
            k=d/i;
            k=(k-(a%k))%k;
            v= (a+k)/__gcd(a+k,b+k)*(b+k);
            if(v<h){
                h=v;
                ans=k;
            }
            if(v==h) ans=min(ans,k);
        }
        cout<<ans<<endl;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/Fy1999/p/10776343.html

时间: 2024-11-02 12:32:03

codeforce 1152C. Neko does Maths(欧几里得算法)的相关文章

Codeforces Round #554 (Div. 2) 1152C. Neko does Maths

学了这么久,来打一次CF看看自己学的怎么样吧 too young too simple 1152C. Neko does Maths 题目链接:"https://codeforces.com/contest/1152/problem/C" 题目大意:给你两个数a,b,现在要你找出一个数k使得(a+k)和(b+k)的最小公倍数最小. 题目思路:暴力(逃) 这题没得思路,想了想既然求LCM了那么和GCD说不定有点关系 然后就没有然后了 比赛的时候交了一发暴力上去,然并软 赛后补题,题解里面

扩展欧几里得算法的模板实现

我居然现在还记不住扩欧的板子,我太弱啦! 扩展欧几里得算法解决的是这样的问题: 给定一个不定方程组ax+by=gcd(a,b),求他的一组整数解 先给出实现代码 void exgcd(int a,int b,int &x,int &y) { if(!b) { x=1,y=0;//gcd(a,0)显然等于1*a-0*0=a return a; } int ans=exgcd(b,a%b,x,y); int tem=x; x=y; y-=tem-(a/b)*y; return ans;} 但实

欧几里得算法与扩展欧几里得算法_C++

先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 注:以下讨论的数均为整数 一.欧几里得算法(重点是证明,对后续知识有用) 欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数 定义 gcd(a,b) 为整数 a 与 b 的最大公约数 引理:gcd(a,b)=gcd(b,a%b) 证明: 设 r=a%b , c=gcd(a,b) 则 a=xc , b=yc , 其中x , y互质

数论及其应用——欧几里得算法

欧几里得是数论当中最基本的定理,以其为基础的拓展欧几里得算法在解决同余方程.求模逆元等问题. 首先来介绍几个概念,数论当中一些基本的概念其实在小学就学过,但是很长一段时间并没有用到它们,因此这里再拿出来温习一下. 我们常常用a|b来表示b能够整除a(b > a),即b/a是整数,但是“|”在使用的过程中容易和绝对值.几何定义符.条件概率混淆,所以,这里我们用a\b来表示a能够整除b. 约数:如果b\a,则称b是a的约数. 倍数:如果b\a,则称a是b的倍数. 最大公约数:gcd(a,b) = m

欧几里得算法

欧几里得算法 定义:欧几里得算法又叫做辗转相除法,用于计算两个整数的最大公约数. 首先,两个整数的最大公约数等于其中较小的那个数和两数的相除余数的最大公约数,证明如下: 假设两个整数a.b,其中a = kb + r,d为a.b任意公约数. 证明:因为d为a.b的公约数,所以a.b都可以被d整除,由a = kb + r可得,r = a - kb,则r/d = a/d - kb/d,因此r也可以被d整除.综上所述(a,b)的公约数和(b,r)相同.故最大公约数也是相同的. public static

证明欧几里得算法的正确性

欧几里得算法又叫辗转相除法,是求解最大公约数的一种古老的方法. 废话不多说,直接开证: 题目:求解正整数a,b(a >= b)的最大公约数. a总可以用b来表示:a = qb + p; 这个式子怎么理解呢? 我们可以这样理解:a是被除数,b是除数,q是商,p是余数(p = a % b). 设 r 为a,b的最大公约数. 则a,b能被r整除(废话- _ -). 下面重点来了:   上式成立. 又因为q*b/r为整除,a也为整数 所以p/r也为整数,即 p 能被 r 整除 此时 r 也是b, p的最

最大公约数-----欧几里得算法

欧几里得算法: 如果求两个数的最大公约数,那么最一般的求法是设置一个变量i=1,然后i不断加一,如果i加到某个数后两个数都能整除这个数了,然后把这个变量保存下来,然后最后的结果中最大的就是最大公约数. 然而这种方法时间复杂度可想而知有多高,所以一般情况瞎并不用这种方法,那么就有下面的欧几里得算法: 输入:两个数 a,b 输出:两个数的最大公约数 c 欧几里得算法:(1)找出两个数中最大的和最小的,分别为tmax.tmin, (2)不断令设置一个变量t代表tmin,tmin赋值为tmax  mod

欧几里得算法 - 计算两个正整数的最大公约数

欧几里得算法-计算两个正整数a,b的最大公约数 #定理:gcd(a,b) = gcd(b, a mod b) 终止条件:余数等于0 返回结果:余数等于0时的除数b # -*- coding: utf-8 -*- __author__ = 'nob' #迭代欧几里得 def iterative_gcd(a, b):     r = a % b     while(r):         a = b         b = r         r = a % b     return b     #

POJ - 1061 青蛙的约会 (扩展欧几里得算法)

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这