AudioMixer是Android的混音器,通过混音器可以把各个音轨的音频数据混合在一起,然后输出到音频设备。
创建AudioMixer
AudioMixer在MixerThread的构造函数内创建:
AudioFlinger::MixerThread::MixerThread(...) { ... mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate); ... }
这说明了一个MixerThread对应一个AudioMixer。
而且MixerThread传了两个参数给AudioMixer:
- mNormalFrameCount,AudioMixer会根据传进来的mNormalFrameCount作为一次输送数据的长度,把源buffer的音频数据写入目的buffer
- mSampleRate,AudioMixer会把传进来的mSampleRate作为音频数据输出的采样率
配置AudioMixer参数
在上一篇描述MixerThread的时候说过,prepareTrack_l内会配置AudioMixer的参数,现在来详细分析一下各个参数的作用。
mAudioMixer->setBufferProvider(name, track);
设置混音的源buffer,name为传入的索引,track即从mActiveTracks取出来的Track
关于索引name,在这里深入分析,name的获取过程如下:
int name = track->name(); + +--> int name() const { return mName; } + +--> mName = thread->getTrackName_l(channelMask, sessionId); + +--> return mAudioMixer->getTrackName(channelMask, sessionId); + +--> uint32_t names = (~mTrackNames) & mConfiguredNames; | +--> int n = __builtin_ctz(names);
names为索引的集合,names的每一个bit代表不同的索引,names上的某个bit为1,就代表该bit可以取出来作为索引,__builtin_ctz的作用是计算names的低位0的个数,即可以取出最低位为1的bit作为索引。如下:
11111111111111111111000000000000 ^
低位有12个0,则取bit12作为索引,那么返回的索引值为1<<12
决定names的参数有两个:
- mTrackNames:用于记录当前的Track,初始值为0。当加入某个Track时,该Track对应的bit会被置为1.
- mConfiguredNames:用于表明该AudioMixer所支持最多的Track数目,如支持最多N个Track,那么mConfiguredNames = 1<<N – 1,此时mConfiguredNames低位的N个bit为1,高位的32-N个bit为0。mConfiguredNames的默认值为-1,即N = 32
mAudioMixer->enable(name);
enable方法只是把track的enabled置为true,然后调用invalidateState(1 << name);表明需要调用刷新函数。
void AudioMixer::enable(int name) { name -= TRACK0; track_t& track = mState.tracks[name]; if (!track.enabled) { track.enabled = true; invalidateState(1 << name); } }
mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, (void *)vl);
mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, (void *)vr);
分别设置左右声道音量,然后调用invalidateState(1 << name);表明需要调用刷新函数。
case VOLUME0: case VOLUME1: if (track.volume[param-VOLUME0] != valueInt) { ALOGV("setParameter(VOLUME, VOLUME0/1: %04x)", valueInt); track.prevVolume[param-VOLUME0] = track.volume[param-VOLUME0] << 16; track.volume[param-VOLUME0] = valueInt; if (target == VOLUME) { track.prevVolume[param-VOLUME0] = valueInt << 16; track.volumeInc[param-VOLUME0] = 0; }
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::FORMAT, (void *)track->format());
保证传进来的PCM数据为16bit
case FORMAT: ALOG_ASSERT(valueInt == AUDIO_FORMAT_PCM_16_BIT); break;
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::CHANNEL_MASK, (void *)track->channelMask());
设置通道数,mask:单音轨(mono),双音轨(stereo)…
case CHANNEL_MASK: { audio_channel_mask_t mask = (audio_channel_mask_t) value; if (track.channelMask != mask) { uint32_t channelCount = popcount(mask); ALOG_ASSERT((channelCount <= MAX_NUM_CHANNELS_TO_DOWNMIX) && channelCount); track.channelMask = mask; //设置mask track.channelCount = channelCount; //更新音轨数目 // the mask has changed, does this track need a downmixer? initTrackDownmix(&mState.tracks[name], name, mask); ALOGV("setParameter(TRACK, CHANNEL_MASK, %x)", mask); invalidateState(1 << name); }
mAudioMixer->setParameter(
name,
AudioMixer::RESAMPLE,
AudioMixer::SAMPLE_RATE,
(void *)reqSampleRate);
设置当前track的采样频率为reqSampleRate,并要求AudioMixer对当前track进行重采样,输出频率为当前AudioMixer的输出频率mSampleRate。然后调用invalidateState(1 << name);表明需要调用刷新函数。调用过程如下:
mAudioMixer->setParameter( + name, | AudioMixer::RESAMPLE, | AudioMixer::SAMPLE_RATE, | (void *)reqSampleRate); | +--> track.setResampler(uint32_t(valueInt), mSampleRate) + +--> if (sampleRate != value) { //只有输入采样率跟输出采样率不同的时候才会进行重采样 + if (resampler == NULL) { | quality = AudioResampler::VERY_HIGH_QUALITY; //高级重采样 | resampler = AudioResampler::create(...); //创建resampler | } |} +--> switch (quality) { | default: | case DEFAULT_QUALITY: | case LOW_QUALITY: | ALOGV("Create linear Resampler"); | resampler = new AudioResamplerOrder1(bitDepth, inChannelCount, sampleRate); | break; | case MED_QUALITY: | ALOGV("Create cubic Resampler"); | resampler = new AudioResamplerCubic(bitDepth, inChannelCount, sampleRate); | break; | case HIGH_QUALITY: | ALOGV("Create HIGH_QUALITY sinc Resampler"); | resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate); | break; | case VERY_HIGH_QUALITY: //由于我们选择的是VERY_HIGH_QUALITY,所以resampler创建的是AudioResamplerSinc | ALOGV("Create VERY_HIGH_QUALITY sinc Resampler = %d", quality); | resampler = new AudioResamplerSinc(bitDepth, inChannelCount, sampleRate, quality); | break; | } | +--> // initialize resampler resampler->init();
mAudioMixer->setParameter(
name,
AudioMixer::TRACK,
AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
设置目的buffer。然后调用invalidateState(1 << name);表明需要调用刷新函数。
我们追踪一下目的buffer是在哪里创建的:
track->mainBuffer() + +--> int16_t *mainBuffer() const { return mMainBuffer; }
mMainBuffer是在track创建的时候就被赋值了
sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(...) + +--> track = new Track(...) + +--> AudioFlinger::PlaybackThread::Track::Track(...) +:mMainBuffer(thread->mixBuffer()) | +--> int16_t *mixBuffer() const { return mMixBuffer; };
thread就是MixerThread,在MixerThread创建的同时,PlaybackThread也一同被创建。在PlaybackThread的构造函数内,申请了一块buffer,并赋值给mMixerBuffer
AudioFlinger::MixerThread::MixerThread + +--> AudioFlinger::PlaybackThread::PlaybackThread + +--> void AudioFlinger::PlaybackThread::readOutputParameters() + +--> mAllocMixBuffer = new int8_t[mNormalFrameCount * mFrameSize + align - 1]; | +--> mMixBuffer = (int16_t *) ((((size_t)mAllocMixBuffer + align - 1) / align) * align);
这表明了一个AudioMixer对应一个mMixBuffer,经过某个AudioMixer的音频数据最后会汇聚到一个buffer内进行输出
invalidateState
我们上面大量提到了invalidateState可以用来表明需要调用刷新函数,现在来分析一下。
void AudioMixer::invalidateState(uint32_t mask) { if (mask) { mState.needsChanged |= mask; //mask即track->name,表明该track需要被刷新 mState.hook = process__validate; } }
由于AudioMixer进行混音处理的时候会调用process方法,而process调用的是mState.hook,所以调用invalidateState,会使得下一次的process函数会调用process__validate进行参数的刷新。process__validate分析如下:
void AudioMixer::process__validate(state_t* state, int64_t pts) { ALOGW_IF(!state->needsChanged, "in process__validate() but nothing‘s invalid"); uint32_t changed = state->needsChanged; //所有需要invalidate的track都在这里面 state->needsChanged = 0; // clear the validation flag // recompute which tracks are enabled / disabled uint32_t enabled = 0; uint32_t disabled = 0; while (changed) { //对于所有需要invalidate的track,取出来 const int i = 31 - __builtin_clz(changed); const uint32_t mask = 1<<i; changed &= ~mask; track_t& t = state->tracks[i]; (t.enabled ? enabled : disabled) |= mask; //通过track.enabled或者track.disabled来判断该track是否需要混音 } state->enabledTracks &= ~disabled; //disabled mask state->enabledTracks |= enabled; //enabled mask // compute everything we need... int countActiveTracks = 0; bool all16BitsStereoNoResample = true; bool resampling = false; bool volumeRamp = false; uint32_t en = state->enabledTracks; while (en) { //对所有需要进行混音的track const int i = 31 - __builtin_clz(en); //取出最高位为1的bit en &= ~(1<<i); //把这一位置为0 countActiveTracks++; track_t& t = state->tracks[i]; //取出来track uint32_t n = 0; n |= NEEDS_CHANNEL_1 + t.channelCount - 1; //至少有一个channel需要混音 n |= NEEDS_FORMAT_16; //必须为16bit PCM n |= t.doesResample() ? NEEDS_RESAMPLE_ENABLED : NEEDS_RESAMPLE_DISABLED; //是否需要重采样 if (t.auxLevel != 0 && t.auxBuffer != NULL) { n |= NEEDS_AUX_ENABLED; } if (t.volumeInc[0]|t.volumeInc[1]) { volumeRamp = true; } else if (!t.doesResample() && t.volumeRL == 0) { n |= NEEDS_MUTE_ENABLED; } t.needs = n; //更新track flag //下面为设置track的混音方法 if ((n & NEEDS_MUTE__MASK) == NEEDS_MUTE_ENABLED) { //mute t.hook = track__nop; } else { if ((n & NEEDS_AUX__MASK) == NEEDS_AUX_ENABLED) { all16BitsStereoNoResample = false; } if ((n & NEEDS_RESAMPLE__MASK) == NEEDS_RESAMPLE_ENABLED) { //重采样 all16BitsStereoNoResample = false; resampling = true; t.hook = track__genericResample; ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2, "Track %d needs downmix + resample", i); } else { if ((n & NEEDS_CHANNEL_COUNT__MASK) == NEEDS_CHANNEL_1){ //单声道 t.hook = track__16BitsMono; all16BitsStereoNoResample = false; } if ((n & NEEDS_CHANNEL_COUNT__MASK) >= NEEDS_CHANNEL_2){ //双声道 t.hook = track__16BitsStereo; ALOGV_IF((n & NEEDS_CHANNEL_COUNT__MASK) > NEEDS_CHANNEL_2, "Track %d needs downmix", i); } } } } // select the processing hooks //下面为设置整体的混音方法,一个process__xxx内会循环调用track_xxx state->hook = process__nop; if (countActiveTracks) { if (resampling) { //重采样,需要多一块重采样buffer if (!state->outputTemp) { state->outputTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } if (!state->resampleTemp) { state->resampleTemp = new int32_t[MAX_NUM_CHANNELS * state->frameCount]; } state->hook = process__genericResampling; } else { if (state->outputTemp) { delete [] state->outputTemp; state->outputTemp = NULL; } if (state->resampleTemp) { delete [] state->resampleTemp; state->resampleTemp = NULL; } state->hook = process__genericNoResampling; //双声道process if (all16BitsStereoNoResample && !volumeRamp) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; //单声道process } } } } ALOGV("mixer configuration change: %d activeTracks (%08x) " "all16BitsStereoNoResample=%d, resampling=%d, volumeRamp=%d", countActiveTracks, state->enabledTracks, all16BitsStereoNoResample, resampling, volumeRamp); state->hook(state, pts); //这里调用一次进行混音,后续会在MixerThread的threadLoop_mix内调用 // Now that the volume ramp has been done, set optimal state and // track hooks for subsequent mixer process if (countActiveTracks) { bool allMuted = true; uint32_t en = state->enabledTracks; while (en) { const int i = 31 - __builtin_clz(en); en &= ~(1<<i); track_t& t = state->tracks[i]; if (!t.doesResample() && t.volumeRL == 0) { t.needs |= NEEDS_MUTE_ENABLED; t.hook = track__nop; } else { allMuted = false; } } if (allMuted) { state->hook = process__nop; } else if (all16BitsStereoNoResample) { if (countActiveTracks == 1) { state->hook = process__OneTrack16BitsStereoNoResampling; } } } }
AudioMixer混音
在分析MixerThread时说过,我们调用AudioMixer的process方法进行混音的,实际上混音的方法是调用AudioMixer内的process_xxx方法,各个process方法大同小异。下面来分析process__genericResampling这个方法。
// generic code with resampling void AudioMixer::process__genericResampling(state_t* state, int64_t pts) { // this const just means that local variable outTemp doesn‘t change int32_t* const outTemp = state->outputTemp; //重采样缓存 const size_t size = sizeof(int32_t) * MAX_NUM_CHANNELS * state->frameCount; size_t numFrames = state->frameCount; uint32_t e0 = state->enabledTracks; while (e0) { // process by group of tracks with same output buffer // to optimize cache use uint32_t e1 = e0, e2 = e0; int j = 31 - __builtin_clz(e1); track_t& t1 = state->tracks[j]; //取出第一个track t1 e2 &= ~(1<<j); //除了t1之外,其余的track的索引都在e2内 //对于其他的track,通过循环取出来,赋值为t2,如果t2的目标buffer与t1的不同,则把t2从e1的集合中去掉 //这么做就是为了把相同目标buffer的track取出来,一起进行混音,因为不同目标buffer的track是要混音输出到不同buffer的 //不过实际上一般都会有相同的目标buffer,如MixerThread设定了mMixBuffer作为track的目标buffer //如果设定了eq(AudioEffect)那就有可能会出现不同目标buffer的情况? while (e2) { j = 31 - __builtin_clz(e2); e2 &= ~(1<<j); track_t& t2 = state->tracks[j]; if (CC_UNLIKELY(t2.mainBuffer != t1.mainBuffer)) { e1 &= ~(1<<j); } } e0 &= ~(e1); int32_t *out = t1.mainBuffer; memset(outTemp, 0, size); while (e1) { //对于e1内的所有track,调用t.hook进行混音 const int i = 31 - __builtin_clz(e1); e1 &= ~(1<<i); track_t& t = state->tracks[i]; int32_t *aux = NULL; if (CC_UNLIKELY((t.needs & NEEDS_AUX__MASK) == NEEDS_AUX_ENABLED)) { aux = t.auxBuffer; } // this is a little goofy, on the resampling case we don‘t // acquire/release the buffers because it‘s done by // the resampler. if ((t.needs & NEEDS_RESAMPLE__MASK) == NEEDS_RESAMPLE_ENABLED) { ALOGE("[%s:%d]", __FUNCTION__, __LINE__); t.resampler->setPTS(pts); t.hook(&t, outTemp, numFrames, state->resampleTemp, aux); //实际上重采样会走这里,然后输出到重采样buffer,outTemp } else { size_t outFrames = 0; ALOGE("[%s:%d]", __FUNCTION__, __LINE__); while (outFrames < numFrames) { t.buffer.frameCount = numFrames - outFrames; int64_t outputPTS = calculateOutputPTS(t, pts, outFrames); t.bufferProvider->getNextBuffer(&t.buffer, outputPTS); t.in = t.buffer.raw; // t.in == NULL can happen if the track was flushed just after having // been enabled for mixing. if (t.in == NULL) break; if (CC_UNLIKELY(aux != NULL)) { aux += outFrames; } t.hook(&t, outTemp + outFrames*MAX_NUM_CHANNELS, t.buffer.frameCount, state->resampleTemp, aux); outFrames += t.buffer.frameCount; t.bufferProvider->releaseBuffer(&t.buffer); } } } ditherAndClamp(out, outTemp, numFrames); //把重采样buffer内的数据输出到out,即目标buffer } }
在process__invalidate时,设置了重采样时track.hook函数为track__genericResample,下面看一下这个函数做了什么
void AudioMixer::track__genericResample(track_t* t, int32_t* out, size_t outFrameCount, int32_t* temp, int32_t* aux) { //设置输入采样率 t->resampler->setSampleRate(t->sampleRate); // ramp gain - resample to temp buffer and scale/mix in 2nd step if (aux != NULL) { // always resample with unity gain when sending to auxiliary buffer to be able // to apply send level after resampling // TODO: modify each resampler to support aux channel? t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1]|t->auxInc)) { volumeRampStereo(t, out, outFrameCount, temp, aux); } else { volumeStereo(t, out, outFrameCount, temp, aux); } } else { if (CC_UNLIKELY(t->volumeInc[0]|t->volumeInc[1])) { t->resampler->setVolume(UNITY_GAIN, UNITY_GAIN); memset(temp, 0, outFrameCount * MAX_NUM_CHANNELS * sizeof(int32_t)); t->resampler->resample(temp, outFrameCount, t->bufferProvider); volumeRampStereo(t, out, outFrameCount, temp, aux); } // constant gain else { //设置音量 t->resampler->setVolume(t->volume[0], t->volume[1]); //进行重采样 t->resampler->resample(out, outFrameCount, t->bufferProvider); } } }
最终调用了resampler的resample方法进行重采样
那么,下一篇我们来分析重采样