JAVA并发编程(二)

设计线程安全的类

设计线程安全类的过程中需要注意三个基本要素:

1、找出构成对象的所有变量

2、找出约束状态变量的不变性条件

3、建立对象状态的并发访问管理策略

同步策略定义了如何在不违背对象不变性条件或者后验条件的情况下对其状态的访问操作进行协同。同步策略规定了如何将不变性、线程封闭和加锁机制等结合起来以维护线程的安全性,并且规定了哪些变量由哪些锁来保护。确保可以对这个类进行分析维护,就需要将同步策略写为正式文档。

如果不了解对象的不变性体条件,就不能确保线程安全性。要满足在状态变量的有效值或者状态转换上的各种约束条件,就需要借助于原子性和封装性。

实例封闭

封装简化了线程安全类的实现过程,将数据封装在对象内部,可以将数据的访问限制在对象的方法上,从而更容易确保线程在访问数据时总能持有正确的锁。

封装更易于构造线程安全的类,因为当封装类的状态时,在分析类的线程安全性时就无须检查整个程序。

线程安全性的委托

如果一个类由多个独立且线程安全的状态变量组成,并且在所有的操作中都不包含无效的状态转换,那么可以将线程安全性委托给底层的状态变量。

如果一个状态变量是线程安全的,并且没有任何不变性条件来约束它的值,在变量的操作上也不存在任何不允许的状态转换,那么久可以安全的发布这个变量。

同步容器类

在早期JDK中,同步容器只有Vector和HashTable,后来引入了Colletions.SynchronizedXX来创建同步容器,这些类实现线程安全的方式是:将它们的状态封装起来,并对每个公有方法都进行同步,使得每次只有一个线程能访问容器的状态。

尽管同步容器类是线程安全的,但是在某些情况下仍然需要额外的客户端加锁来保护复合操作。

并发容器

Java5.0提供了多种并发容器来改进同步容器的性能。同步容器将所有对容器状态访问都串行化,以实现它们的线程安全,这种方法的代价是严重降低了并发性。当多个线程竞争容器锁时,吞吐量将严重降低。

通过并发容器代替同步容器,可以极大的提高伸缩性,降低风险。

常用的类有ConcurrentHashMap,CopyOnWriteArrayList,BlockingQueue,

ConcurrentLinkedQueue,ConcurrentSkipListMap等等。

同步工具类

闭锁是一种同步工具类,可以延迟线程的进度直到到达终止状态。CountDownLactch是一种灵活的闭锁实现。

FutureTask也可以用做闭锁。

计数信号量Semaphore用来控制同时访问某个特定资源的操作数量,或者同时执行某个操作的数量。

栅栏能阻塞一组线程直到某个事件发生。栅栏与闭锁的关键区别在于,所有线程必须同时到达栅栏位置才能继续执行。闭锁用于等待事件,而栅栏用于等待其他线程。CyclicBarier是一种栅栏实现。

欢迎扫描二维码,关注公众号

时间: 2025-01-09 08:47:03

JAVA并发编程(二)的相关文章

【Java并发编程二】同步容器和并发容器

一.同步容器 在Java中,同步容器包括两个部分,一个是vector和HashTable,查看vector.HashTable的实现代码,可以看到这些容器实现线程安全的方式就是将它们的状态封装起来,并在需要同步的方法上加上关键字synchornized. 另一个是Collections类中提供的静态工厂方法创建的同步包装类. 同步容器都是线程安全的.但是对于复合操作(迭代.缺少即加入.导航:根据一定的顺序寻找下一个元素),有时可能需要使用额外的客户端加锁进行保护.在一个同步容器中,复合操作是安全

Java 并发编程(二):如何保证共享变量的原子性?

线程安全性是我们在进行 Java 并发编程的时候必须要先考虑清楚的一个问题.这个类在单线程环境下是没有问题的,那么我们就能确保它在多线程并发的情况下表现出正确的行为吗? 我这个人,在没有副业之前,一心扑在工作上面,所以处理的蛮得心应手,心态也一直保持的不错:但有了副业之后,心态就变得像坐过山车一样.副业收入超过主业的时候,人特别亢奋,像打了鸡血一样:副业迟迟打不开局面的时候,人就变得惶惶不可终日. 仿佛我就只能是个单线程,副业和主业并行开启多线程模式的时候,我就变得特别没有安全感,尽管整体的收入

《Java并发编程实战》第三章 对象的共享 读书笔记

一.可见性 什么是可见性? Java线程安全须要防止某个线程正在使用对象状态而还有一个线程在同一时候改动该状态,并且须要确保当一个线程改动了对象的状态后,其它线程能够看到发生的状态变化. 后者就是可见性的描写叙述即多线程能够实时获取其它线程改动后的状态. *** 待补充   两个工人同一时候记录生产产品总数问题 1. 失效数据 可见性出现故障就是其它线程没有获取到改动后的状态,更直观的描写叙述就是其它线程获取到的数据是失效数据. 2. 非原子64位操作 3. 加锁与可见性 比如在一个变量的读取与

《java并发编程的艺术》读书笔记-第三章Java内存模型(二)

一概述 本文属于<java并发编程的艺术>读书笔记系列,第三章java内存模型第二部分. 二final的内存语义 final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量.可以参照之前整理的关键字final.这里作者主要介绍final域的内存语义. 对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序. 初次读一个包含final域的对象的引用,与随后初次读这

JAVA并发编程实战 读书笔记(二)对象的共享

<java并发编程实战>读书摘要 birdhack 2015年1月2日 对象的共享 JAVA并发编程实战读书笔记 我们已经知道了同步代码块和同步方法可以确保以原子的方式执行操作,但一种常见的误解是,认为关键之synchronized只能用于实现原子性或者确定临界区.同步还有另一个重要的方面:内存可见性. 1.可见性 为了确保多个线程之间对内存写入操作的可见性,必须使用同步机制. 在没有同步的情况下,编译器.处理器以及运行时等都可能对操作的执行顺序进行一些意想不到的调整.在缺乏足够同步的多线程程

转: 【Java并发编程】之二十:并发新特性—Lock锁和条件变量(含代码)

简单使用Lock锁 Java5中引入了新的锁机制--Java.util.concurrent.locks中的显式的互斥锁:Lock接口,它提供了比synchronized更加广泛的锁定操作.Lock接口有3个实现它的类:ReentrantLock.ReetrantReadWriteLock.ReadLock和ReetrantReadWriteLock.WriteLock,即重入锁.读锁和写锁.lock必须被显式地创建.锁定和释放,为了可以使用更多的功能,一般用ReentrantLock为其实例化

Java并发编程:Callable、Future和FutureTask(转)

Java并发编程:Callable.Future和FutureTask 在前面的文章中我们讲述了创建线程的2种方式,一种是直接继承Thread,另外一种就是实现Runnable接口. 这2种方式都有一个缺陷就是:在执行完任务之后无法获取执行结果. 如果需要获取执行结果,就必须通过共享变量或者使用线程通信的方式来达到效果,这样使用起来就比较麻烦. 而自从Java 1.5开始,就提供了Callable和Future,通过它们可以在任务执行完毕之后得到任务执行结果. 今天我们就来讨论一下Callabl

6、Java并发编程:volatile关键字解析

Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在Java 5之后,volatile关键字才得以重获生机. volatile关键字虽然从字面上理解起来比较简单,但是要用好不是一件容易的事情.由于volatile关键字是与Java的内存模型有关的,因此在讲述volatile关键之前,我们先来了解一下与内存模型相关的概念和知识,然后分析了volatil

7、Java并发编程:深入剖析ThreadLocal

Java并发编程:深入剖析ThreadLocal 想必很多朋友对ThreadLocal并不陌生,今天我们就来一起探讨下ThreadLocal的使用方法和实现原理.首先,本文先谈一下对ThreadLocal的理解,然后根据ThreadLocal类的源码分析了其实现原理和使用需要注意的地方,最后给出了两个应用场景. 以下是本文目录大纲: 一.对ThreadLocal的理解 二.深入解析ThreadLocal类 三.ThreadLocal的应用场景 若有不正之处请多多谅解,并欢迎批评指正. 请尊重作者

《java并发编程实战》笔记(一)

最近在看<java并发编程实战>,希望自己有毅力把它读完. 线程本身有很多优势,比如可以发挥多处理器的强大能力.建模更加简单.简化异步事件的处理.使用户界面的相应更加灵敏,但是更多的需要程序猿面对的是安全性问题.看下面例子: public class UnsafeSequence { private int value; /*返回一个唯一的数值*/ public int getNext(){ return value++; } } UnsafeSequence的问题在于,如果执行时机不对,那么