ML | SVM

What‘s xxx

An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall on.

In addition to performing linear classification, SVMs can efficiently perform a non-linear classification using what is called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces.  The transformation may be nonlinear and the transformed space high dimensional; thus though the classifier is a hyperplane in the high-dimensional feature space, it may be nonlinear in the original input space.

Classifying data is a common task in machine learning. Suppose some given data points each belong to one of two classes, and the goal is to decide which class a new data point will be in. In the case of support vector machines, a data point is viewed as a p-dimensional vector (a list of p numbers), and we want to know whether we can separate such points with a (p − 1)-dimensional hyperplane. This is called a linear classifier. We choose the hyperplane so that the distance from it to the nearest data point on each side is maximized. If such a hyperplane exists, it is known as the maximum-margin hyperplane and the linear classifier it defines is known as a maximum margin classifier.

Any hyperplane can be written as the set of points $\mathbf{x}$ satisfying
$\mathbf{w}\cdot\mathbf{x} - b=0,\,$
where $\cdot$ denotes the dot product and ${\mathbf{w}}$ the (not necessarily normalized) normal vector to the hyperplane.

Maximum-margin hyperplane and margins for an SVM trained with samples from two classes. Samples on the margin are called the support vectors.

It was converted into a quadratic programming optimization problem. The solution can be expressed as a linear combination of the training vectors

$\mathbf{w} = \sum_{i=1}^n{\alpha_i y_i\mathbf{x_i}}.$
Only a few $\alpha_i$ will be greater than zero. The corresponding $\mathbf{x_i}$ are exactly the support vectors, which lie on the margin and satisfy $y_i(\mathbf{w}\cdot\mathbf{x_i} - b) = 1$. From this one can derive that the support vectors also satisfy

$\mathbf{w}\cdot\mathbf{x_i} - b = 1 / y_i = y_i \iff b = \mathbf{w}\cdot\mathbf{x_i} - y_i$
which allows one to define the offset b. In practice, it is more robust to average over all $N_{SV}$ support vectors:

$b = \frac{1}{N_{SV}} \sum_{i=1}^{N_{SV}}{(\mathbf{w}\cdot\mathbf{x_i} - y_i)}$

Writing the classification rule in its unconstrained dual form reveals that the maximum-margin hyperplane and therefore the classification task is only a function of the support vectors, the subset of the training data that lie on the margin.

Using the fact that $\|\mathbf{w}\|^2 = \mathbf{w}\cdot \mathbf{w}$ and substituting $\mathbf{w} = \sum_{i=1}^n{\alpha_i y_i\mathbf{x_i}}$, one can show that the dual of the SVM reduces to the following optimization problem:

Maximize (in $\alpha_i$ )

$\tilde{L}(\mathbf{\alpha})=\sum_{i=1}^n \alpha_i - \frac{1}{2}\sum_{i, j} \alpha_i \alpha_j y_i y_j \mathbf{x}_i^T \mathbf{x}_j=\sum_{i=1}^n \alpha_i - \frac{1}{2}\sum_{i, j} \alpha_i \alpha_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$
subject to (for any $i = 1, \dots, n$)

$\alpha_i \geq 0,\, $
and to the constraint from the minimization in $b$

$\sum_{i=1}^n \alpha_i y_i = 0.$
Here the kernel is defined by $k(\mathbf{x}_i,\mathbf{x}_j)=\mathbf{x}_i\cdot\mathbf{x}_j.$

$W$ can be computed thanks to the \alpha terms:

$\mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i.$

ML | SVM

时间: 2024-10-12 08:09:13

ML | SVM的相关文章

OpenCV3 Ref SVM : cv::ml::SVM Class Reference

OpenCV3  Ref SVM : cv::ml::SVM Class Reference OpenCV2: #include <opencv2/core/core.hpp>#include <opencv2/highgui/highgui.hpp>#include <opencv2/ml/ml.hpp>#include <iostream> using namespace cv;using namespace std; int main(){ float

简单HOG+SVM mnist手写数字分类

使用工具 :VS2013 + OpenCV 3.1 数据集:minst 训练数据:60000张 测试数据:10000张 输出模型:HOG_SVM_DATA.xml 数据准备 train-images-idx3-ubyte.gz:  training set images (9912422 bytes) train-labels-idx1-ubyte.gz:  training set labels (28881 bytes) t10k-images-idx3-ubyte.gz:   test s

SVM+HOG特征训练分类器

#1,概念 在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类.以及回归分析. SVM的主要思想可以概括为两点:⑴它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而 使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是

【OpenCV】opencv3.0中的SVM训练 mnist 手写字体识别

前言: SVM(支持向量机)一种训练分类器的学习方法 mnist 是一个手写字体图像数据库,训练样本有60000个,测试样本有10000个 LibSVM 一个常用的SVM框架 OpenCV3.0 中的ml包含了很多的ML框架接口,就试试了. 详细的OpenCV文档:http://docs.opencv.org/3.0-beta/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html mnist数据下载:http://yann.l

[code segments] OpenCV3.0 SVM with C++ interface

talk is cheap, show you the code: /************************************************************************/ /* Name : OpenCV SVM test */ /* Date : 2015/11/7 */ /* Author : aban */ /********************************************************************

OpenCV 之 支持向量机 (一)

统计学习方法是由 模型 + 策略 + 算法 构成的,构建一种统计学习方法 (例如,支持向量机),实际上就是具体去确定这三个要素. 1  支持向量机 支持向量机,简称 SVM (Support Vector Machine),是一种二分分类模型. 1) 基本模型 (model) 定义在特征空间上的,一种间隔 (margin) 最大的,线性分类器 (linear classifier) 2) 学习策略 (strategy) 使间隔最大化,可转化为求解凸二次规划的问题. 3) 学习算法 (algori

【error】OpenCV Error: Parsing error (Missing or invalid SVM type) in read_params, file modules/ml/src/svm.cpp

前言 移植代码到板子上出现小问题,其实非常简单,但是不一定能立即想到,故还是记录一下.好记性不如烂笔头~ 错误 Vxworks上的error 0x21c411c0 (iRtp_imx6): RTP 0x2117b0e0 has been deleted due to signal 6. OpenCV Error: Parsing error (Missing or invalid SVM type) in read_params, file modules/ml/src/svm.cpp, lin

汽车检测SIFT+BOW+SVM

整个执行过程如下:1)获取一个训练数据集. 2)创建BOW训练器并获得视觉词汇. 3)采用词汇训练SVM. 4)尝试对测试图像的图像金字塔采用滑动宽口进行检测. 5)对重叠的矩形使用非极大抑制. 6)输出结果. 该项目的结构如下: |-----car_detector|       |--detector.py| |--__init__.py| |--non_maximum.py| |--pyramid.py| |--sliding_window.py|-----car_sliding_wind

在opencv3中利用SVM进行图像目标检测和分类

采用鼠标事件,手动选择样本点,包括目标样本和背景样本.组成训练数据进行训练 1.主函数 #include "stdafx.h" #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; Mat img,image; Mat targetData, backData; bool flag = true; string wdname = "image"; voi