1995年,尼尔·斯洛恩和西蒙·普劳夫定义了超级阶乘(superfactorial)为首n个阶乘的积。即f(n)=1!×2!×3!×...×n!,这是一个很大的数字,我们可能不太容易求出来,为了简化问题我们只求他们的位数。
输入一个T,下面有T组数据(1<=T<=10000)
每组数据包含一个n(1<=n<=100000);
输出f(n)的位数
2
2
3
1
2
题目分析
由于n比较大所以完全不能使用暴力算法,必须使用预处理。
f(n) = 1!×2!×.......(n-1)!×n!
求位数时候
f(n)的位数 = lg(f(n)) + 1 = lg(1!×2!×.......(n-1)!×n! ) +1 = lg(1!) +.............+lg(n-1)! + lg(n!) + 1;
阶乘也可以化简为lg(n!) = lg(1×2......................×n) = lg(1)+lg(2)+..........+lg(n)
#include<stdio.h>
#include<math.h>
#include<string.h>
#define maxn 100005
double f[maxn];
int main()
{
int i, T;
// freopen("1.in", "r", stdin);
// freopen("1.out", "w", stdout);
for(i=1; i<maxn; i++)
f[i] = f[i-1] + log10(i);//先求阶乘的位数
for(i=1; i<maxn; i++)//求超级阶乘的位数
f[i] += f[i-1];
scanf("%d", &T);
while(T--)
{
int n;
scanf("%d", &n);
printf("%.0f\n", f[n]+1);
}
return 0;
}
/*
1 1 1
2 2 1
3 12 2
4 288 3
5 34560 6
6 24883200 8
7 125411328000 12
8 5056584744960000 17
9 1834933472251084800000 22
10 6658606584104736800000000000 29
11 265790267296391960000000000000000000 36
12 127313963299399430000000000000000000000000000 45
13 792786697595796870000000000000000000000000000000000000 55
14 69113789582492716000000000000000000000000000000000000000000000000 66
*/