《算法导论》读书笔记之动态规划—矩阵链乘法

前言:今天接着学习动态规划算法,学习如何用动态规划来分析解决矩阵链乘问题。首先回顾一下矩阵乘法运算法,并给出C++语言实现过程。然后采用动态规划算法分析矩阵链乘问题并给出C语言实现过程。

1、矩阵乘法

 

  

  

  从定义可以看出:只有当矩阵A的列数与矩阵B的行数相等时A×B才有意义。一个m×r的矩阵A左乘一个r×n的矩阵B,会得到一个m×n的矩阵C。在计算机中,一个矩阵说穿了就是一个二维数组。一个m行r列的矩阵可以乘以一个r行n列的矩阵,得到的结果是一个m行n列的矩阵,其中的第i行第j列位置上的数等于前一个矩阵第i行上的r个数与后一个矩阵第j列上的r个数对应相乘后所有r个乘积的和。采用C++语言实现完整的两个矩阵乘法,程序如下所示:

 1 #include <iostream>
 2 using namespace std;
 3 #define A_ROWS        3
 4 #define A_COLUMNS     2
 5 #define B_ROWS        2
 6 #define B_COLUMNS     3
 7 void matrix_multiply(int A[A_ROWS][A_COLUMNS],int B[B_ROWS][B_COLUMNS],int C[A_ROWS][B_COLUMNS]);
 8 int main()
 9 {
10     int A[A_ROWS][A_COLUMNS] = {1,0,
11                                 1,2,
12                                 1,1};
13     int B[B_ROWS][B_COLUMNS] = {1,1,2,
14                                 2,1,2};
15     int C[A_ROWS][B_COLUMNS] = {0};
16     matrix_multiply(A,B,C);
17     for(int i=0;i<A_ROWS;i++)
18     {
19         for(int j=0;j<B_COLUMNS;j++)
20             cout<<C[i][j]<<" ";
21         cout<<endl;
22     }
23     return 0;
24 }
25 void matrix_multiply(int A[A_ROWS][A_COLUMNS],int B[B_ROWS][B_COLUMNS],int C[A_ROWS][B_COLUMNS])
26 {
27     if(A_COLUMNS != B_ROWS)
28         cout<<"error: incompatible dimensions."<<endl;
29     else
30     {
31         int i,j,k;
32         for(i=0;i<A_ROWS;i++)
33             for(j=0;j<B_COLUMNS;j++)
34             {
35                 C[i][j] = 0;
36                 for(k=0;k<A_COLUMNS;k++)
37                     C[i][j] += A[i][k] * B[k][j]; //将A的每一行的每一列与B的每一列的每一行的乘积求和
38             }
39     }
40 }

程序测试结果如下所示:

2、矩阵链乘问题描述

  给定n个矩阵构成的一个链<A1,A2,A3,.......An>,其中i=1,2,...n,矩阵A的维数为pi-1pi,对乘积 A1A2...A以一种最小化标量乘法次数的方式进行加全部括号。

  注意:在矩阵链乘问题中,实际上并没有把矩阵相乘,目的是确定一个具有最小代价的矩阵相乘顺序。找出这样一个结合顺序使得相乘的代价最低。

3、动态规划分析过程

1)最优加全部括号的结构

  动态规划第一步是寻找一个最优的子结构。假设现在要计算AiAi+1....Aj的值,计算Ai...j过程当中肯定会存在某个k值(i<=k<j)将Ai...j分成两部分,使得Ai...j的计算量最小。分成两个子问题Ai...k和Ak+1...j,需要继续递归寻找这两个子问题的最优解。

  有分析可以到最优子结构为:假设AiAi+1....Aj的一个最优加全括号把乘积在Ak和Ak+1之间分开,则Ai..k和Ak+1..j也都是最优加全括号的。

2)一个递归解

  设m[i,j]为计算机矩阵Ai...j所需的标量乘法运算次数的最小值,对此计算A1..n的最小代价就是m[1,n]。现在需要来递归定义m[i,j],分两种情况进行讨论如下:

当i==j时:m[i,j] = 0,(此时只包含一个矩阵)

当i<j 时:从步骤1中需要寻找一个k(i≤k<j)值,使得m[i,j] =min{m[i,k]+m[k+1,j]+pi-1pkpj} (i≤k<j)。

3)计算最优代价

  虽然给出了递归解的过程,但是在实现的时候不采用递归实现,而是借助辅助空间,使用自底向上的表格进行实现。设矩阵Ai的维数为pi-1pi,i=1,2.....n。输入序列为:p=<p0,p1,...pn>,length[p] = n+1。使用m[n][n]保存m[i,j]的代价,s[n][n]保存计算m[i,j]时取得最优代价处k的值,最后可以用s中的记录构造一个最优解。书中给出了计算过程的伪代码,摘录如下:

 1 MAXTRIX_CHAIN_ORDER(p)
 2   n = length[p]-1;
 3   for i=1 to n
 4       do m[i][i] = 0;
 5   for t = 2 to n  //t is the chain length
 6        do for i=1 to n-t+1
 7                      j=i+t-1;
 8                      m[i][j] = MAXLIMIT;
 9                      for k=i to j-1
10                             q = m[i][k] + m[k+1][i] + qi-1qkqj;
11                             if q < m[i][j]
12                                then m[i][j] = q;
13                                     s[i][j] = k;
14   return m and s;

MATRIX_CHAIN_ORDER具有循环嵌套,深度为3层,运行时间为O(n3)。如果采用递归进行实现,则需要指数级时间Ω(2n),因为中间有些重复计算。递归是完全按照第二步得到的递归公式进行计算,递归实现如下所示:

 1 int recursive_matrix_chain(int *p,int i,int j,int m[N+1][N+1],int s[N+1][N+1])
 2 {
 3     if(i==j)
 4        m[i][j] = 0;
 5     else
 6     {
 7         int k;
 8         m[i][j] = MAXVALUE;
 9         for(k=i;k<j;k++)
10         {
11             int temp = recursive_matrix_chain(p,i,k,m,s) +recursive_matrix_chain(p,k+1,j,m,s) + p[i-1]*p[k]*p[j];
12             if(temp < m[i][j])
13             {
14                 m[i][j] = temp;
15                 s[i][j] = k;
16             }
17         }
18     }
19     return m[i][j];
20 }

对递归算计的改进,可以引入备忘录,采用自顶向下的策略,维护一个记录了子问题的表,控制结构像递归算法。完整程序如下所示:

 1 int memoized_matrix_chain(int *p,int m[N+1][N+1],int s[N+1][N+1])
 2 {
 3     int i,j;
 4     for(i=1;i<=N;++i)
 5         for(j=1;j<=N;++j)
 6         {
 7            m[i][j] = MAXVALUE;
 8         }
 9     return lookup_chain(p,1,N,m,s);
10 }
11
12 int lookup_chain(int *p,int i,int j,int m[N+1][N+1],int s[N+1][N+1])
13 {
14     if(m[i][j] < MAXVALUE)
15         return m[i][j]; //直接返回,相当于查表
16     if(i == j)
17         m[i][j] = 0;
18     else
19     {
20         int k;
21         for(k=i;k<j;++k)
22         {
23             int temp = lookup_chain(p,i,k,m,s)+lookup_chain(p,k+1,j,m,s) + p[i-1]*p[k]*p[j];  //通过递归的形式计算,只计算一次,第二次查表得到
24             if(temp < m[i][j])
25             {
26                 m[i][j] = temp;
27                 s[i][j] = k;
28             }
29         }
30     }
31     return m[i][j];
32 }

4)构造一个最优解

第三步中已经计算出来最小代价,并保存了相关的记录信息。因此只需对s表格进行递归调用展开既可以得到一个最优解。书中给出了伪代码,摘录如下:

1 PRINT_OPTIMAL_PARENS(s,i,j)
2   if i== j
3      then print "Ai"
4   else
5      print "(";
6      PRINT_OPTIMAL_PARENS(s,i,s[i][j]);
7      PRINT_OPTIMAL_PARENS(s,s[i][j]+1,j);
8      print")";

4、编程实现

  采用C++语言实现这个过程,现有矩阵A1(30×35)、A2(35×15)A3(15×5)、A4(5×10)、A5(10×20)、A6(20×25),得到p=<30,35,15,5,10,20,25>。实现过程定义两个二维数组m和s,为了方便计算其第一行和第一列都忽略,行标和列标都是1开始。完整的程序如下所示:

按 Ctrl+C 复制代码

按 Ctrl+C 复制代码

程序测试结果如下所示:

5、总结

  动态规划解决问题关键是分析过程,难度在于如何发现其子问题的结构及子问题的递归解。这个需要多多思考,不是短时间内能明白。在实现过程中遇到问题就是数组,数组的下标问题是个比较麻烦的事情,如何能够过合理的去处理,需要一定的技巧。

From: http://www.cnblogs.com/Anker/archive/2013/03/10/2952475.html

时间: 2024-10-08 21:35:13

《算法导论》读书笔记之动态规划—矩阵链乘法的相关文章

算法导论读书笔记之钢条切割问题

算法导论读书笔记之钢条切割问题 巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 给定一段长度为n英寸的钢条和一个价格表 pi (i=1,2, -,n),求切割钢条的方案,使得销售收益rn最大.注意,如果长度为n英寸的钢条价格pn足够大,最优解可能就是完全不需要切割. 若钢条的长度为i,则钢条的价格为Pi,如何对给定长度的钢条进行切割能得到最大收益? 长度i   1   2    3   4     5      6     7     8  

算法导论读书笔记(17)

算法导论读书笔记(17) 目录 动态规划概述 钢条切割 自顶向下的递归实现 使用动态规划解决钢条切割问题 子问题图 重构解 钢条切割问题的简单Java实现 动态规划概述 和分治法一样, 动态规划 (dynamic programming)是通过组合子问题的解而解决整个问题的.分治法是将问题划分成一些独立的子问题,递归地求解各子问题,然后合并子问题的解而得到原问题的解.与此不同,动态规划适用于子问题并不独立的情况,即各子问题包含公共的子子问题.在这种情况下,分治法会重复地求解公共的子子问题.而动态

算法导论读书笔记(13)

算法导论读书笔记(13) 目录 红黑树 旋转 插入 情况1 : z 的叔父结点 y 是红色的 情况2 : z 的叔父结点 y 是黑色的,而且 z 是右孩子 情况3 : z 的叔父结点 y 是黑色的,而且 z 是左孩子 删除 情况1 : x 的兄弟 w 是红色的 情况2 : x 的兄弟 w 是黑色的,且 w 的两个孩子都是黑色的 情况3 : x 的兄弟 w 是黑色的, w 的左孩子是红色的,右孩子是黑色的 情况4 : x 的兄弟 w 是黑色的,且 w 的右孩子是红色的 红黑树 红黑树 是一种二叉查

算法导论读书笔记(18)

算法导论读书笔记(18) 目录 最长公共子序列 步骤1:描述最长公共子序列的特征 步骤2:一个递归解 步骤3:计算LCS的长度 步骤4:构造LCS LCS问题的简单Java实现 最长公共子序列 某给定序列的子序列,就是将给定序列中零个或多个元素去掉后得到的结果.其形式化定义如下:给定一个序列 X = < x1 , x2 , - , xm >,另一个序列 Z = < z1 , z2 , - , zk >,如果 Z 满足如下条件则称 Z 为 X 的 子序列 (subsequence),

算法导论读书笔记(15) - 红黑树的具体实现

算法导论读书笔记(15) - 红黑树的具体实现 目录 红黑树的简单Java实现 红黑树的简单Java实现 /** * 红黑树 * * 部分代码参考自TreeMap源码 */ public class RedBlackTree<T> { protected TreeNode<T> root = null; private final Comparator<? super T> comparator; private int size = 0; private static

算法导论读书笔记(16)

算法导论读书笔记(16) 目录 动态顺序统计 检索具有给定排序的元素 确定一个元素的秩 区间树 步骤1:基础数据结构 步骤2:附加信息 步骤3:维护信息 步骤4:设计新操作 动态顺序统计 之前介绍过 顺序统计 的概念.在一个无序的集合中,任意的顺序统计量都可以在 O ( n )时间内找到.而这里我们将介绍如何在 O ( lg n )时间内确定任意的顺序统计量. 下图显示的是一种支持快速顺序统计量操作的数据结构.一棵 顺序统计树 T 通过在红黑树的每个结点中存入附加信息而成.在一个结点 x 内,增

算法导论读书笔记(14) - 二叉查找树的具体实现

算法导论读书笔记(14) - 二叉查找树的具体实现 目录 二叉查找树的简单Java实现 二叉查找树的简单Java实现 /** * 二叉查找树 * 部分代码参考自TreeMap的源码 */ public class BinarySearchTree<T> { protected TreeNode<T> root = null; private final Comparator<? super T> comparator; private int size = 0; pub

动态规划-矩阵链乘法

问题描述: 给定由n个要相乘的矩阵构成的序列(链)<A1,A2,...,An>,要计算乘积A1A2...An,可以将两个矩阵相乘的标准算法作为一个子程序,通过加括号确定计算的顺序(对同一矩阵链,不同的计算顺序所需要的计算次数大不相同). 目标问题:给定n个矩阵构成的矩阵链<A1,A2,...,An>,其中,i=1,2,...,n,矩阵Ai的维数为pi-1×pi,对乘积A1A2...An以一种最小计算次数加全部括号. 穷尽搜索: 令P(n)表示一串n个矩阵可能的加全部方案数.当n=1

[动态规划] 矩阵链乘法问题

什么是矩阵链乘法(Matrix Chain Multiplication) 矩阵链乘法问题是指给定一串矩阵序列M?M2..Mn,求至少需要进行多少次乘法运算才能求得结果 比如对于这个M?M?M?的矩阵链, 我们可以先计算M?M?然后结果乘以M?,也可以M?M?先算,然后乘以M?,为了表达方便,可以用括号表示计算顺序. 矩阵链M?M?M?有两种计算顺序:((M?M?)M?)和(M?(M?M?)). 那么不同计算顺序有什么区别? 对于((M?M?)M?): 对于(M?(M?M?)):  我们要做的就