斐波那契查找

斐波那契查找又称为黄金比例分割查找,

大家记不记得斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….(从第三个数开始,后边每一个数都是前两个数的和)

然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分
割。

如何实现

如何实现斐波那契查找,可以参考这篇CSDN博客,里面的代码写的很详尽。

我需要补充的一点是,并不一定非得左边是F[k-1]-1,右边是F[k-2]-1,也可以反过来,如果反过来的话只需要修改几行代码就OK了

把这一段改成

  1. int mid=low+F[k-1]-1;
  2. if(key<temp[mid])
  3. {
  4. high=mid-1;
  5. k-=1;
  6. }
  7. else if(key>temp[mid])
  8. {
  9. low=mid+1;
  10. k-=2;
  11. }

如下:

 1  int mid=low+F[k-1]-1;
 2     if(key<temp[mid])
 3     {
 4       high=mid-1;
 5       k-=1;
 6     }
 7     else if(key>temp[mid])
 8     {
 9      low=mid+1;
10      k-=2;
11     }  

这样就可以反过来了。

时间: 2024-08-03 21:33:43

斐波那契查找的相关文章

二分查找和斐波那契查找

二分查找 说明:查找的数组或列表必须是有序的,若无序,先进行排序 复杂度:时间复杂度 O(log2n),空间复杂度O(n) C++源码(递归和非递归两个版本) #include <iostream> using namespace std; int a[] = { 1, 2, 3, 4, 5, 6, 8 }; int BinarySearch1(int l, int r, int value) { int mid = (l + r) / 2; if (l == r && a[l

斐波那契查找原理详解与实现

最近看见一个要求仅使用加法减法实现二分查找的题目,百度了一下,原来要用到一个叫做斐波那契查找的的算法.查百度,是这样说的: 斐波那契查找与折半查找很相似,他是根据斐波那契序列的特点对有序表进行分割的.他要求开始表中记录的个数为某个斐波那契数小1,即n=F(k)-1;  开始将k值与第F(k-1)位置的记录进行比较(及mid=low+F(k-1)-1),比较结果也分为三种  1)相等,mid位置的元素即为所求  2)>   ,low=mid+1,k-=2;说明:low=mid+1说明待查找的元素在

数据结构之---C语言实现斐波那契查找

斐波那契查找的核心思想是: 1)当key=a[mid]时,查找成功: 2)当key<a[mid]时,新的查找范围是第low个到第mid-1个,此时范围个数为F[k-1] - 1个,即数组左边的长度,所以要在[low, F[k - 1] - 1]范围内查找: 3)当key>a[mid]时,新的查找范围是第mid+1个到第high个,此时范围个数为F[k-2] - 1个,即数组右边的长度,所以要在[F[k - 2] - 1]范围内查找. 代码: //斐波那契查找 //杨鑫 #include <

斐波那契查找算法完整C代码

/* 斐波那契查找法 */ #include <stdio.h> #include <stdlib.h> int Fib( int k ) { if( 1 == k || 2 == k ) return 1; else return Fib(k-1)+Fib(k-2); } int FibSearch( int *a, int n, int key ) { int k = 1; int nFib; int *b; int low, mid, high; while( Fib(k)

"二分查找(Binary Search)"与"斐波那契查找(Fibonacci Search)"

首先,我们来看一个笔者的拙作,一段二分查找代码 //返回值是key的下标,如果A中不存在key则返回-1 template <class T> int BinSearch(T* A, const T &key, int lo, int hi) {     int mid;     while(lo<hi)     {         mid = lo + (hi-lo)/2;         if(key < A[mid])             hi = mid-1;

(java)有序表查找——折半查找,插值查找,斐波那契查找

有序表查找 /* 主函数 */ public class OrderTableSearch { public static void main(String[] args) { int [] a= {0,1,16,24,35,47,59,62,73,88,99}; System.out.println(FibonacciSearch(a, 10, 88)); System.out.println(InsertKeySearch(a, 10, 88)); System.out.println(Bi

斐波那契查找(超详解)

// 斐波那契查找.cpp #include <iostream> #include <string.h> using namespace std; const int max_size=20;//斐波那契数组的长度 /*构造一个斐波那契数组*/ void Fibonacci(int * F) { F[0]=0; F[1]=1; for(int i=2;i<max_size;++i) F[i]=F[i-1]+F[i-2]; } /*定义斐波那契查找法*/ int Fibona

斐波那契查找法

void Fibonacci(int *f) { f[0] = 1; f[1] = 1; for (int i = 2; i < MAXSIZE; i++) { f[i] = f[i - 1] + f[i - 2]; } } int Fibonacci_Search(int *a, int n, int key) { int low, high, mid; low = 1; high = n - 1; int k = 0; int F[MAXSIZE]; Fibonacci(F); //问题一:

斐波那契查找算法 -数据结构

这个是我本人写的斐波那契查找算法,和网上的其他思路略有不同,特贴出来: 1)没有预先存储斐波那契的数组,整个的搜索数据长度可以变动: 2)mid索引的变动是动态变化的,根据斐波那契的回退方法: #include<stdlib.h>#include<stdio.h> #define INF 32767#define SIZE 92int Feibinaci(int str[],int n,int key){ int F0 = 1; int F1 = 1; int temp; int