线程同步(一)

解决方案:一个资源,一次只允许一个线程使用,其他线程只能等待。直到资源被释放。

问题抽象:当某一资源可能同时被多个线程读取和修改时,资源的状态将变得难以预料。

线程同步方案:volatile、lock、Interlocked、Moniter、SpinLock、ReadWriteLockSlim、Mutex

方案特性:除所有者外,其他人无条件等待;先到先得

各方案间的区别:这些方案从它们各自的实现方式可分为三种:用户模式构造、内核模式构造 和 混合模式构造。

应该尽量使用用户模式构造,它们的速度要显著快于内核模式的构造。这是因为它们使用了特殊 CPU 指令来协调线程。这意味着协调是在硬件中发生的(所以才这么快)。它们有一个缺点:只有 Windows 操作系统内核才能停止一个线程的运行(以避免浪费 CPU 时间)。所以,一个线程想要取得一个资源但又暂时取不到,它会一直在用户模式中运行。这可能浪费大量 CPU 时间。

内核模式的构造是由 Windows 操作系统自身提供的。所以,它们要求你在应用程序的线程中调用在操作系统内核中实现的函数。将线程从用户模式切换为内核模式(或相反)会招致巨大的性能损失,这正是为什么应该避免使用内核模式构造的原因。然后,它们有一个重要的优点:一个线程使用一个内核模式的构造获取一个由其它线程拥有的资源时,Windows会阻塞线程,使它不再浪费 CPU 时间。然后,当资源变得可用时,Windows 会恢复线程,允许它访问资源。

---- 《CLR via C# (第 3 版)》 P706

一、volatile关键字

  volatile是最简单的一种同步方法,当然简单是要付出代价的。它只能在变量一级做同步,volatile的含义就是告诉处理器, 不要将我放入工作内存, 请直接在主存操作我。(【转自www.bitsCN.com 】)因此,当多线程同时访问该变量时,都将直接操作主存,从本质上做到了变量共享。

  能够被标识为volatile的必须是以下几种类型:(摘自MSDN)

  • Any reference type.
  • Any pointer type (in an unsafe context).
  • The types sbyte, byte, short, ushort, int, uint, char, float, bool.
  • An enum type with an enum base type of byte, sbyte, short, ushort, int, or uint.

  如:

public class A
{
private volatile int _i;
public int I
{
get { return _i; }
set { _i = value; }
}
}

  但volatile并不能实现真正的同步,因为它的操作级别只停留在变量级别,而不是原子级别。如果是在单处理器系统中,是没有任何问题的,变量在主存中没有机会被其他人修改,因为只有一个处理器,这就叫作processor Self-Consistency。但在多处理器系统中,可能就会有问题。 每个处理器都有自己的data cach,而且被更新的数据也不一定会立即写回到主存。所以可能会造成不同步,但这种情况很难发生,因为cach的读写速度相当快,flush的频率也相当高,只有在压力测试的时候才有可能发生,而且几率非常非常小。

二、lock关键字

  lock是一种比较好用的简单的线程同步方式,它是通过为给定对象获取互斥锁来实现同步的。它可以保证当一个线程在关键代码段的时候,另一个线程不会进来,它只能等待,等到那个线程对象被释放,也就是说线程出了临界区。用法:

public void Function()
{
object lockThis = new object ();
lock (lockThis)
{
// Access thread-sensitive resources.
}
}

  lock的参数必须是基于引用类型的对象,不要是基本类型像bool,int什么的,这样根本不能同步,原因是lock的参数要求是对象,如果传入int,势必要发生装箱操作,这样每次lock的都将是一个新的不同的对象。最好避免使用public类型或不受程序控制的对象实例,因为这样很可能导致死锁。特别是不要使用字符串作为lock的参数,因为字符串被CLR“暂留”,就是说整个应用程序中给定的字符串都只有一个实例,因此更容易造成死锁现象。建议使用不被“暂留”的私有或受保护成员作为参数。其实某些类已经提供了专门用于被锁的成员,比如Array类型提供SyncRoot,许多其它集合类型也都提供了SyncRoot。

  所以,使用lock应该注意以下几点: 

  1.如果一个类的实例是public的,最好不要lock(this)。因为使用你的类的人也许不知道你用了lock,如果他new了一个实例,并且对这个实例上锁,就很容易造成死锁。

  2.如果MyType是public的,不要lock(typeof(MyType))

  3.永远也不要lock一个字符串

三、System.Threading.Interlocked

  对于整数数据类型的简单操作,可以用 Interlocked 类的成员来实现线程同步,存在于System.Threading命名空间。Interlocked类有以下方法:Increment , Decrement , Exchange 和CompareExchange 。使用Increment 和Decrement 可以保证对一个整数的加减为一个原子操作。Exchange 方法自动交换指定变量的值。CompareExchange 方法组合了两个操作:比较两个值以及根据比较的结果将第三个值存储在其中一个变量中。比较和交换操作也是按原子操作执行的。如:

int i = 0 ;
System.Threading.Interlocked.Increment( ref i);
Console.WriteLine(i);
System.Threading.Interlocked.Decrement( ref i);
Console.WriteLine(i);
System.Threading.Interlocked.Exchange( ref i, 100 );
Console.WriteLine(i);
System.Threading.Interlocked.CompareExchange( ref i, 10 , 100 );

  

时间: 2024-10-12 21:00:49

线程同步(一)的相关文章

[.net]基元线程同步构造

1 /* 基元线程同步构造 2 用户模式构造: 3 易变构造(Volatile Construct) 4 互锁构造(Interlocked Construct):自旋锁(Spinlock) 乐观锁(Optimistic Concurrency Control,乐观并发控制) 5 内核模式构造: 6 事件构造(Event) 7 信号量构造(Semaphore) 8 互斥体构造(Mutex) 9 */ 10 11 //易变构造,Volatile.Write()之前的所有字段写入操作,必须再该方法调用

iOS多线程编程:线程同步总结 NSCondtion

1:原子操作 - OSAtomic系列函数 iOS平台下的原子操作函数都以OSAtomic开头,使用时需要包含头文件<libkern/OSBase.h>.不同线程如果通过原子操作函数对同一变量进行操作,可以保证一个线程的操作不会影响到其他线程内对此变量的操作,因为这些操作都是原子式的.因为原子操作只能对内置类型进行操作,所以原子操作能够同步的线程只能位于同一个进程的地址空间内. 2:锁 - NSLock系列对象 iOS平台下的锁对象为NSLock对象,进入锁通过调用lock函数,解锁调用unl

线程同步之EVENT

事件可传信给其他线程,表示某些条件现在已具备,比如有可用的消息. 事件可分为手动复位和自动复位,前者可传信给许多同时等待事件的线程而且可以被复位. 自动复位的事件传信给单个等待时间的线程,该事件会自动复位. Applications can use event objects in a number of situations to notify a waiting thread of the occurrence of an event. For example, overlapped I/O

【java并发】(2) Java线程同步:synchronized锁住的是代码还是对象

在Java中,synchronized关键字是用来控制线程同步的,就是在多线程的环境下,控制synchronized代码段不被多个线程同时执行.synchronized既可以加在一段代码上,也可以加在方法上. 关键是,不要认为给方法或者代码段加上synchronized就万事大吉,看下面一段代码: class Sync { public synchronized void test() { System.out.println("test开始.."); try { Thread.sle

Java多线程(二) —— 线程安全、线程同步、线程间通信(含面试题集)

一.线程安全 多个线程在执行同一段代码的时候,每次的执行结果和单线程执行的结果都是一样的,不存在执行结果的二义性,就可以称作是线程安全的. 讲到线程安全问题,其实是指多线程环境下对共享资源的访问可能会引起此共享资源的不一致性.因此,为避免线程安全问题,应该避免多线程环境下对此共享资源的并发访问. 线程安全问题多是由全局变量和静态变量引起的,当多个线程对共享数据只执行读操作,不执行写操作时,一般是线程安全的:当多个线程都执行写操作时,需要考虑线程同步来解决线程安全问题. 二.线程同步(synchr

系统API函数实现多线程及线程同步

1.线程的创建 须包含头文件:#include <windows.h> HANDLE CreateThread( LPSECURITY_ATTRIBUTES lpThreadAttributes, DWORD dwStackSize, LPTHREAD_START_ROUTINE lpStartAddress, LPVOID lpParameter, DWORD dwCreationFlags, LPDWORD lpThreadId ); lpThreadAttributes:指向SECURI

Java进击C#——语法之线程同步

上一章我们讲到关于C#线程方向的应用.但是笔者并没有讲到多线程中的另一个知识点--同步.多线程的应用开发都有可能发生脏数据.同步的功能或多或少都会用到.本章就要来讲一下关于线程同步的问题.根据笔者这几年来的.NET开发可以了解到的同步方式至少有四种以上.如.lock.volatile.Monitor等. lock方式 对lock的关键字作用跟JAVA的synchronized关键字类似.但有一定的差别.JAVA的synchronized关键字可能修饰在方法上面.可惜C#却不能修饰在方法上面.用法

经典线程同步 信号量Semaphore

阅读本篇之前推荐阅读以下姊妹篇: <秒杀多线程第四篇一个经典的多线程同步问题> <秒杀多线程第五篇经典线程同步关键段CS> <秒杀多线程第六篇经典线程同步事件Event> <秒杀多线程第七篇经典线程同步互斥量Mutex> 前面介绍了关键段CS.事件Event.互斥量Mutex在经典线程同步问题中的使用.本篇介绍用信号量Semaphore来解决这个问题. 首先也来看看如何使用信号量,信号量Semaphore常用有三个函数,使用很方便.下面是这几个函数的原型和使

Linux系统开发9 线程同步

[本文谢绝转载原文来自http://990487026.blog.51cto.com] <大纲> Linux系统编程8 线程同步 多线程共享资源,不加锁,同步互斥演示 多线程共享资源,加锁,同步互斥演示 读写锁:3个写线程,5个读线程,不加锁,并行处理 读写锁:3个写线程,5个读线程,加读写锁,串行处理 条件变量:生产消费者模型 信号量 进程间锁 文件锁: 习题 死锁,哲学家就餐 多线程共享资源,不加锁,同步互斥演示 [email protected]:~/linux_c/thread$ ca

线程同步方式比较

用户模式下的方法有:原子操作(例如一个单一的全局变量),临界区. 内核模式下的方法有:事件,信号量,互斥量. 临界区 保证在某一时刻只有一个线程能访问数据的简便办法.在任意时刻只允许一个线程对共享资源进行访问.如果有多个线程试图同时访问临界区,那么 在有一个线程进入后其他所有试图访问此临界区的线程将被挂起,并一直持续到进入临界区的线程离开.临界区在被释放后,其他线程可以继续抢占,并以此达到用原子方式操 作共享资源的目的. 仅能在同一进程内使用 互斥量 Mutex 互斥量跟临界区很相似,只有拥有互