Manacher算法总结

Manacher算法

算法总结第三弹 manacher算法,前面讲了两个字符串相算法——kmp和拓展kmp,这次来还是来总结一个字符串算法,manacher算法,我习惯叫他 “马拉车”算法。

相对于前面介绍的两个算法,Manacher算法的应用范围要狭窄得多,但是它的思想和拓展kmp算法有很多共通支出,所以在这里介绍一下。Manacher算法是查找一个字符串的最长回文子串的线性算法。

在介绍算法之前,首先介绍一下什么是回文串,所谓回文串,简单来说就是正着读和反着读都是一样的字符串,比如abba,noon等等,一个字符串的最长回文子串即为这个字符串的子串中,是回文串的最长的那个。

计算字符串的最长回文字串最简单的算法就是枚举该字符串的每一个子串,并且判断这个子串是否为回文串,这个算法的时间复杂度为O(n^3)的,显然无法令人满意,稍微优化的一个算法是枚举回文串的中点,这里要分为两种情况,一种是回文串长度是奇数的情况,另一种是回文串长度是偶数的情况,枚举中点再判断是否是回文串,这样能把算法的时间复杂度降为O(n^2),但是当n比较大的时候仍然无法令人满意,Manacher算法可以在线性时间复杂度内求出一个字符串的最长回文字串,达到了理论上的下界。

1.Manacher算法原理与实现

下面介绍Manacher算法的原理与步骤。

首先,Manacher算法提供了一种巧妙地办法,将长度为奇数的回文串和长度为偶数的回文串一起考虑,具体做法是,在原字符串的每个相邻两个字符中间插入一个分隔符,同时在首尾也要添加一个分隔符,分隔符的要求是不在原串中出现,一般情况下可以用#号。下面举一个例子:

(1)Len数组简介与性质

Manacher算法用一个辅助数组Len[i]表示以字符T[i]为中心的最长回文字串的最右字符到T[i]的长度,比如以T[i]为中心的最长回文字串是T[l,r],那么Len[i]=r-i+1。

对于上面的例子,可以得出Len[i]数组为:

Len数组有一个性质,那就是Len[i]-1就是该回文子串在原字符串S中的长度,至于证明,首先在转换得到的字符串T中,所有的回文字串的长度都为奇数,那么对于以T[i]为中心的最长回文字串,其长度就为2*Len[i]-1,经过观察可知,T中所有的回文子串,其中分隔符的数量一定比其他字符的数量多1,也就是有Len[i]个分隔符,剩下Len[i]-1个字符来自原字符串,所以该回文串在原字符串中的长度就为Len[i]-1。

有了这个性质,那么原问题就转化为求所有的Len[i]。下面介绍如何在线性时间复杂度内求出所有的Len。

(2)Len数组的计算

首先从左往右依次计算Len[i],当计算Len[i]时,Len[j](0<=j<i)已经计算完毕。设P为之前计算中最长回文子串的右端点的最大值,并且设取得这个最大值的位置为po,分两种情况:

第一种情况:i<=P

那么找到i相对于po的对称位置,设为j,那么如果Len[j]<P-i,如下图:

那么说明以j为中心的回文串一定在以po为中心的回文串的内部,且j和i关于位置po对称,由回文串的定义可知,一个回文串反过来还是一个回文串,所以以i为中心的回文串的长度至少和以j为中心的回文串一样,即Len[i]>=Len[j]。因为Len[j]<P-i,所以说i+Len[j]<P。由对称性可知Len[i]=Len[j]。

如果Len[j]>=P-i,由对称性,说明以i为中心的回文串可能会延伸到P之外,而大于P的部分我们还没有进行匹配,所以要从P+1位置开始一个一个进行匹配,直到发生失配,从而更新P和对应的po以及Len[i]。

第二种情况: i>P

如果i比P还要大,说明对于中点为i的回文串还一点都没有匹配,这个时候,就只能老老实实地一个一个匹配了,匹配完成后要更新P的位置和对应的po以及Len[i]。

2.时间复杂度分析

Manacher算法的时间复杂度分析和Z算法类似,因为算法只有遇到还没有匹配的位置时才进行匹配,已经匹配过的位置不再进行匹配,所以对于T字符串中的每一个位置,只进行一次匹配,所以Manacher算法的总体时间复杂度为O(n),其中n为T字符串的长度,由于T的长度事实上是S的两倍,所以时间复杂度依然是线性的。

下面是算法的实现,注意,为了避免更新P的时候导致越界,我们在字符串T的前增加一个特殊字符,比如说‘$’,所以算法中字符串是从1开始的。

const int maxn=1000010;
char str[maxn];//原字符串
char tmp[maxn<<1];//转换后的字符串
int Len[maxn<<1];
//转换原始串
int INIT(char *st)
{
    int i,len=strlen(st);
    tmp[0]='@';//字符串开头增加一个特殊字符,防止越界
    for(i=1;i<=2*len;i+=2)
    {
        tmp[i]='#';
        tmp[i+1]=st[i/2];
    }
    tmp[2*len+1]='#';
    tmp[2*len+2]='$';//字符串结尾加一个字符,防止越界
    tmp[2*len+3]=0;
    return 2*len+1;//返回转换字符串的长度
}
//Manacher算法计算过程
int MANACHER(char *st,int len)
{
     int mx=0,ans=0,po=0;//mx即为当前计算回文串最右边字符的最大值
     for(int i=1;i<=len;i++)
     {
         if(mx>i)
         Len[i]=min(mx-i,Len[2*po-i]);//在Len[j]和mx-i中取个小
         else
         Len[i]=1;//如果i>=mx,要从头开始匹配
         while(st[i-Len[i]]==st[i+Len[i]])
         Len[i]++;
         if(Len[i]+i>mx)//若新计算的回文串右端点位置大于mx,要更新po和mx的值
         {
             mx=Len[i]+i;
             po=i;
         }
         ans=max(ans,Len[i]);
     }
     return ans-1;//返回Len[i]中的最大值-1即为原串的最长回文子串额长度
  }
时间: 2024-10-13 16:19:30

Manacher算法总结的相关文章

HDU 3068 最长回文 (manacher算法)

最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 9188    Accepted Submission(s): 3159 Problem Description 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 回文就是正反读都是一样的字符串,如aba, abba等 Input 输入有多组

最长回文---hdu3068 (回文串 manacher 算法模板)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意很清楚:就是求一个串s的子串中最长回文串的长度:这类题用到了manacher算法 manacher算法(复制大神的解释): 定义数组p[i]表示以i为中心的(包含i这个字符)回文串半径长 将字符串s从前扫到后for(int i=0;i<strlen(s);++i)来计算p[i],则最大的p[i]就是最长回文串长度,则问题是如何去求p[i]? 由于s是从前扫到后的,所以需要计算p[i]时一定

LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhorizen/article/details/6629268 class Solution { public: string longestPalindrome(string s) { char ch[2001];int p[2001]; ch[2*s.size()] = 0; for(int i =

Manacher算法----最长回文子串

题目描述 给定一个字符串,求它的最长回文子串的长度. 分析与解法 最容易想到的办法是枚举所有的子串,分别判断其是否为回文.这个思路初看起来是正确的,但却做了很多无用功,如果一个长的子串包含另一个短一些的子串,那么对子串的回文判断其实是不需要的.同时,奇数和偶数长度还要分别考虑. Manacher算法可以解决上述问题,并在O(n)时间复杂度内求出结果.下面我们来看一下Manacher算法. 首先,为了处理奇偶的问题,在每个字符的两边都插入一个特殊的符号,这样所有的奇数或偶数长度都转换为奇数长度.比

浅谈Manacher算法与扩展KMP之间的联系

首先,在谈到Manacher算法之前,我们先来看一个小问题:给定一个字符串S,求该字符串的最长回文子串的长度.对于该问题的求解,网上解法颇多,时间复杂度也不尽相同,这里列述几种常见的解法. 解法一 通过枚举S的子串,然后判断该子串是否为回文,由于S的子串个数大约为,加上每次判断需要的时间,所以总的时间复杂度为,空间复杂度为. bool check(string &S, int left, int right) { while (left < right && S[left]

[hiho 01]最长回文子串、Manacher算法

题目描述 - 基础方法:枚举子串,判断是否为回文串. - 改进:枚举中间位置,向两侧拓展. - 再改进:利用以前的信息,使得不用每个新位置都从长度1开始拓展. - 优化:将字符串预处理为奇数长度以避免考虑条件分支. - 再优化:开头加入特殊字符避免考虑边界. Manacher 算法: id 是中心点,mx 是其边界.P[i] 表示以 i 为中心的最长回文子串的折半长度. 只要 i < mx, 以 i 为中心的回文子串就可以不必从长度1开始找,而从min{P[j], mx - i}开始(其中j为i

hdu-3068 最长回文 【Manacher算法】

Manacher算法学习资料:http://blog.csdn.net/dyx404514/article/details/42061017 最长回文 Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 9282    Accepted Submission(s): 3194 Problem Description 给出一个只由小写英文字符

hdu-3613 Best Reward (manacher算法)

Best Reward 题目链接 Description After an uphill battle, General Li won a great victory. Now the head of state decide to reward him with honor and treasures for his great exploit. One of these treasures is a necklace made up of 26 different kinds of gems

Manacher算法 , 实例 详解 . NYOJ 最长回文

Manacher 算法 定义数组 p[i]表示以i为中心

[转] Manacher算法详解

转载自: http://blog.csdn.net/dyx404514/article/details/42061017 Manacher算法 算法总结第三弹 manacher算法,前面讲了两个字符串相算法——kmp和拓展kmp,这次来还是来总结一个字符串算法,manacher算法,我习惯叫他 “马拉车”算法. 相对于前面介绍的两个算法,Manacher算法的应用范围要狭窄得多,但是它的思想和拓展kmp算法有很多共通支出,所以在这里介绍一下.Manacher算法是查找一个字符串的最长回文子串的线