poj 1845(等比数列前n项和及快速幂)

Sumdiv

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 13959   Accepted: 3433

Description

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

Input

The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.

Output

The only line of the output will contain S modulo 9901.

Sample Input

2 3

Sample Output

15

Hint

2^3 = 8.

The natural divisors of 8 are: 1,2,4,8. Their sum is 15.

15 modulo 9901 is 15 (that should be output).

Source

Romania OI 2002

思路看:

http://hi.baidu.com/necsinmyway/item/9f10b6d96c5068fbb2f77740

AC代码:

#include<iostream>
using namespace std;
#define LL long long
LL pow_mod(LL a,LL n,int mod){         //快速幂
    LL r=1;
    LL base=a;
    while(n){
        if(n&1)
            r=r*base%mod;
        base=base*base%mod;
        n>>=1;
    }
    return r%9901;
}
LL sum(LL a,LL b,LL mod){             //二分求等比数列前N项和
    if(b==0)
        return 1;
    if(b%2==1)
        return (sum(a,b/2,mod)*(pow_mod(a,b/2+1,mod)+1))%mod;
    else
        return (sum(a,b-1,mod)+pow_mod(a,b,mod))%mod;
}
int main(){
    LL a,b;
    LL ans;
    while(cin>>a>>b){
        ans=1;
        for(LL i=2;i*i<=a;i++){           //将a分解为质数的乘积
            if(a%i==0){
                LL s=0;
                while(a%i==0){
                    s++;
                    a/=i;
                }
                ans=ans*sum(i%9901,b*s,9901)%9901;
            }
        }
        if(a>=2){
            ans=ans*sum(a%9901,b,9901)%9901;
        }
        cout<<ans<<endl;
    }
    return 0;
}

poj 1845(等比数列前n项和及快速幂)

时间: 2024-11-02 23:35:16

poj 1845(等比数列前n项和及快速幂)的相关文章

poj 1845 Sumdiv (同余定理,快速幂取余)

链接:poj 1845 题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数 (2)约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的所有因子之和为 S = 

【POJ 1845】 Sumdiv (整数唯分+约数和公式+二分等比数列前n项和+同余)

[POJ 1845] Sumdiv 用的东西挺全 最主要通过这个题学了约数和公式跟二分求等比数列前n项和 另一种小优化的整数拆分  整数的唯一分解定理: 随意正整数都有且仅仅有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   当中pi均为素数 约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的全部因子之和为 S = (1+p1+p1^2+p1^3+...p1^k1

Poj 3233 Matrix Power Series(矩阵二分快速幂)

题目链接:http://poj.org/problem?id=3233 解题报告:输入一个边长为n的矩阵A,然后输入一个k,要你求A + A^2 + A^3 + A^4 + A^5.......A^k,然后结果的每个元素A[i][j] % m.(n <= 30,k < 10^9,m < 10^4) 要用到矩阵快速幂,但我认为最重要的其实还是相加的那个过程,因为k的范围是10^9,一个一个加肯定是不行的,我想了一个办法就是我以k = 8为例说明: ans = A + A^2 + A^3 +

POJ 1995 Raising Modulo Numbers (数论-整数快速幂)

Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 4379   Accepted: 2516 Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, oth

POJ 1845 Sumdiv (整数拆分+等比快速求和)

当我们拆分完数据以后, A^B的所有约数之和为: sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...*[1+pn+pn^2+...+pn^(an*B)]. 当时面对等比数列的时候,想到了求和公式,因为直接算超时了,但是带膜除法不能直接除,所以又想到了乘法逆元,但是逆元的使用条件是除数和mod互质的时候,题目给我们的膜不够大,然后我就方了,不知道该怎么去处理了,后来看到网上,才学会了等比快速求和的方法. 它的思想是二分法

POJ 3744 Scout YYF I (概率DP+矩阵快速幂)

题意:小明要从1走过一段直线雷区,给定n个地雷的坐标,他走一步的概率是p,两步的概率为1-p,问你他能安全通过雷区的概率. 析:很明显这是一个概率DP,用d(i)表示到达 i 时他安全的概率,那么d[i] = p * d[i-1] + (1-p) * d[i-2];这个状态转移方程很好理解, 就是说要想到达 i 要么从第 i-1 走一步,要么从 i-2 走两步,最后加起来,然后问题来了,这个数可能达到 1E8,那么时间空间复杂度都受不了, 观察这个状态转移方程,是不是很像Fibnacci数列,所

HDU2256&amp;&amp;HDU4565:给一个式子的求第n项的矩阵快速幂

HDU2256 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256 题意:求(sqrt(2)+sqrt(3))^2n%1024是多少. 这个题算是hdu4565的一个常数版本了,所以我们先说这道题.对于这道题的做法我们可以计算((sqrt(2)+sqrt(3))^2)^n=(5+2*sqrt(6))^n,对于(5+2*sqrt(6))^n我们知道答案必定是以an+bn*sqrt(6),而对于下一项我们只需要求(an+bn*sqrt(6))*(5

POJ 3420 Quad Tiling 状压DP+矩阵快速幂

链接:http://poj.org/problem?id=3420 题意:给一个4*N(1 ≤ N ≤ 1e9)的矩形空间,并且给不限块数的1*2的多米诺骨牌,问是由多少种方式能把这个矩形空间填满. 思路:看到这种问题果断想到状压,虽然是在看矩阵的时候看到的这道题.dp[i][j]表示在第i行状态为j的情况下的填满方式数,j的二进制表示中0表示对应位置上一行的骨牌是竖放,或者对应位置的骨牌是横放,1则表示该行该位置的骨牌是竖放.由于N最大1e9所以O(n)的DP绝对超时,用矩阵快速幂来加速DP递

POJ 3233 Matrix Power Series 【经典矩阵快速幂+二分】

任意门:http://poj.org/problem?id=3233 Matrix Power Series Time Limit: 3000MS   Memory Limit: 131072K Total Submissions: 28619   Accepted: 11646 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + - + Ak. Input The