The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
#include <iostream> using namespace std; int divi(long long a) { int res = 0; for (int i = 1; i <= a; i++) { if (a%i == 0) res++; } return res; } int main() { long long count = 0; for (int i = 1; i <= 10000000; i++) { count += i; if (divi(count) >= 500) break; //cout << i << endl; } printf("%lld\n", count); system("pause"); return 0; }
虽然能算出结果但是真的好慢。
任何整数都可以质因数分解成 N=p1^a1 * p2^a2 * p3^a3 * ...
则N的因子个数为(a1+1)*(a2+1)*(a3+1)*....
#include <iostream> #include <map> using namespace std; int divi(long long a) { int res = 1; map<int, int> mp; for (int i = 2; i <= a; i++) { while (a != i) { if (a%i == 0) { mp[i]++; a = a / i; } else break; } } if (a != 1) mp[a]++; map<int, int>::iterator iter = mp.begin(); for (iter = mp.begin(); iter != mp.end(); iter++) { //cout << iter->first << " " << iter->second << endl; res = res*(iter->second + 1); } return res; } int main() { long long count = 0; for (int i = 1; i <= 10000000; i++) { count += i; if (divi(count) >= 500) break; //cout << i << endl; } printf("%lld\n", count); system("pause"); return 0; }
时间: 2024-10-10 05:58:40