BZOJ1051|HAOI2006受欢迎的牛|强连通分量

Description
每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头牛被所有的牛认为是受欢迎的。
Input
第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B)
Output
一个数,即有多少头牛被所有的牛认为是受欢迎的。
Sample Input
3 3
1 2
2 1
2 3
Sample Output
1【数据范围】
10%的数据N<=20, M<=50
30%的数据N<=1000,M<=20000
70%的数据N<=5000,M<=50000
100%的数据N<=10000,M<=50000
分析:tarjan强连通分量求缩点重构图,出度为0的点若只有一个则输出其代表强连通分量的大小,否则无解。因为显然若有两个出度为0的点,两点之间不能相互欢迎。模板题。

#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;

int n,m;
int tot=0,cnt=0,top=0;
struct node{
       int to,next;
}e[50001],d[50001];

int head[10001];
int dfn[10001],low[10001],q[10001];
int scc=0,h[10001],belong[10001],hav[10001];//scc是强连通分量的个数
bool vis[10001],inq[10001];
int ans=0;

void dfs(int a)
{
     int now;
     inq[a]=vis[a]=1;
     low[a]=dfn[a]=++cnt;
     q[++top]=a;
     int c=head[a];
     while(c)
     {
        if (!vis[e[c].to])
        {
            dfs(e[c].to);
            low[a]=min(low[a],low[e[c].to]);
        }
        else if (inq[e[c].to]) low[a]=min(low[a],dfn[e[c].to]);
        c=e[c].next;
    }
    if (low[a]==dfn[a])
    {
       scc++;
       while (now!=a)
       {
             now=q[top--];
             inq[now]=0;
             belong[now]=scc;
             ++hav[scc];
       }
    }
}             

void rebuild()
{
     cnt=0;
     for (int i=1; i<=n; i++)
     {
         int c=head[i];
         while (c)
         {
               if (belong[e[c].to]!=belong[i])
               {
                  d[++cnt].to=belong[e[c].to];
                  d[cnt].next=h[i];
                  h[i]=cnt;
               }
               c=d[c].next;
         }
     }
}

void work()
{
    for (int i=1; i<=scc; i++)
        if (!h[i])
                 {
                             if (ans)
                             {
                                       ans=0; return;
                          }
                          else ans=hav[i];
                          if (i==1) cout << hav[i]<< endl;
                 }

}

void tarjan()
{
       for (int i=1; i<=n; i++) if (!vis[i]) dfs(i);
    rebuild();
}

int main()
{

    cin >> n >> m;
    for (int i=1; i<=m; i++)
    {
        int x,y,z;
        cin >> x >> y;
        e[++tot].to=y; e[tot].next=head[x]; head[x]=tot;
    }
    tarjan();
    work();
    cout << ans;
    system("pause");
    return 0;
}
时间: 2024-10-19 09:39:01

BZOJ1051|HAOI2006受欢迎的牛|强连通分量的相关文章

[HAOI2006]受欢迎的牛 [强连通分量]

Description 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的"喜欢"是可以传递的--如果A喜欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你算出有多少头奶牛可以当明星. Solution 每个奶牛是一个点,将爱慕关系看成边,建图. 考虑如果途中出现环,那么环上的奶牛都可能是大明星,所以可以把一个强连通分量放在一起考虑. 如果只有一个出度为0的强连通分量,那么里面

bzoj1051 [HAOI2006]受欢迎的牛

1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可

【强连通分量】Bzoj1051 HAOI2006 受欢迎的牛

Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Solution 那么对于x如果可以也就是所有节点都可以到达x,如果无环也就是x要无出度且无出度的点数正好为1(出边连点必到不了x). 然而这是有环的,那么把强连通分量缩起来就行了. Code 我这个傻逼现在才会求强连通分量. 而且还

[BZOJ1051] [HAOI2006] 受欢迎的牛 (强联通分量)

Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这 种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头 牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可 能出现多个A,B) Output 一个数,即有多少头牛被所有的牛认为是受欢迎的. Sample Input 3

BZOJ 1051: [HAOI2006]受欢迎的牛 强连通缩点

题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=1051 题解: 强连通缩点得到DAG图,将图转置一下,对入度为零的点跑dfs看看能不能访问到所有的点. 代码: #include<iostream> #include<cstdio> #include<vector> #include<stack> #include<algorithm> #include<cstring> u

【bzoj1051】 [HAOI2006]受欢迎的牛 tarjan缩点判出度算点数

[bzoj1051] [HAOI2006]受欢迎的牛 2014年1月8日7450 Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Input 第一行两个数N,M. 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可能出现多个A,B) Output

1051: [HAOI2006]受欢迎的牛

1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2410  Solved: 1276[Submit][Status] Description 每一头牛的愿望就是变成一头最受欢迎的牛.现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎. 这种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎.你的任务是求出有多少头牛被所有的牛认为是受欢迎的. Input 第一行两个数

P2341 [HAOI2006]受欢迎的牛(更完)

P2341 [HAOI2006]受欢迎的牛 题解 tarjan 缩点板子题 如果 A 稀饭 B,那就 A 向 B 连边,构造出一个有向图 如果这个有向图里有强连通分量,也就说明这个强连通分量里的所有奶牛互相稀饭,他们都有机会成为明星奶牛 但是如果这个有向图里有2个及以上的出度为0的强连通分量,那么就不会有任何一个明星奶牛 所以就是tarjan缩点+寻找出度为0的强连通分量 代码 #include<iostream> #include<cstdio> #include<algo

P2341 [HAOI2006]受欢迎的牛(tarjan+缩点)

P2341 [HAOI2006]受欢迎的牛 题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C.牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你 算出有多少头奶牛可以当明星. 输入输出格式 输入格式: ? 第一行:两个用空格分开的整数:N和M ? 第二行到第M + 1行:每行两个用空格分开的整数:A和B,表示A喜欢B 输出格式: ? 第一行: