POJ 2891 Strange Way to Express Integers(一元线性同余方程组模版题)

题意:给出n个模方程组:x mod ai = ri。求x的最小正值。如果不存在这样的x,那么输出-1.

涉及的数论知识:

对于一般式ax
≡ b(mod m)

当a=1时,两个同余方程就可以合并成一个同余方程

比如对于本题:

x mod a1=r1

x mod a2=r2

有不定方程:

x=r2+a2*y2

x=r2+a2*y2

联立:

a1y1+a2*(-y2)=r2-r1

可以通过扩展gcd求解出y1,回带解得特解(x*)

所以通解是满足合并后的同余方程的所有同余类解:x mod (lcm(a1,a2)) =(x*)
(由数论结论知只有一类同余解,证明不说辣)

经过n-1次合并解出在0~lcm(a1,a2,a3...an)内的特解(x*) 就解决辣

//Accepted	148K	16MS	C++	989B
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
typedef long long ll;
using namespace std;
ll a1,r1,a2,r2;
ll x,y;
int n;
ll e_gcd(ll a,ll b,ll&x,ll&y)
{
    ll ans;
    if(b==0)
    {
        ans=a;
        x=1,y=0;
    }
    else
    {
        ans=e_gcd(b,a%b,y,x);
        y-=(a/b)*x;
    }
    return ans;
}
bool flag;
int main()
{
    while(~scanf("%d",&n))
    {
        flag=0;
        scanf("%I64d%I64d",&a1,&r1);
        for(int i=1;i<n;i++)
        {
            scanf("%I64d%I64d",&a2,&r2);
            ll R=r2-r1;
            ll d=e_gcd(a1,a2,x,y);
            ll tmp=a2/d;
            if(R%d) flag=1;
            r1=((x*R/d)%tmp+tmp)%tmp*a1+r1;//合并成新的同余方程
            a1=a1*(a2/d);//合并成新的同余方程
        }
        if(flag) puts("-1");
        else
        {
            ll lcm = a1;
            ll ans=(r1%lcm+lcm)%lcm;//使解在0~lcm[a1,a2,a3...an]之内
            printf("%I64d\n",ans);
        }
    }
    return 0;
}
时间: 2024-11-10 05:58:33

POJ 2891 Strange Way to Express Integers(一元线性同余方程组模版题)的相关文章

poj 2891 Strange Way to Express Integers

http://poj.org/problem?id=2891 这道题的题意是:给你多个模性方程组:m mod ai=ri 求最小的m: 中国剩余定理 1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #define ll long long 5 using namespace std; 6 7 ll gcd(ll a,ll b,ll &x,ll &y) 8 { 9 if(!

poj 2891 Strange Way to Express Integers (扩展gcd)

题目链接 题意:给k对数,每对ai, ri.求一个最小的m值,令m%ai = ri; 分析:由于ai并不是两两互质的, 所以不能用中国剩余定理. 只能两个两个的求. a1*x+r1=m=a2*y+r2联立得:a1*x-a2*y=r2-r1;设r=r2-r2; 互质的模线性方程组m=r[i](mod a[i]).两个方程可以合并为一个,新的a1为lcm(a1,a2), 新的r为关于当前两个方程的解m,然后再和下一个方程合并--.(r2-r1)不能被gcd(a1,a2)整除时无解. 怎么推出的看了好

poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   Accepted: 2873 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is

求解一元线性同余方程组模版

解法:直接上模版. 扩展欧几里德的模版: typedef long long LL; LL ex_gcd(LL a,LL b,LL &x,LL &y) { if(b==0) { x=1; y=0; return a; } LL d=ex_gcd(b,a%b,x,y); LL t=x; x=y; y=t-a/b*y; return d; } 求解一元线性同余方程组模版: LL solve(LL n) { LL a1,r1,a2,r2; LL a,b,c,r,x,y; bool ifhave=

poj——2891 Strange Way to Express Integers

Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839   Accepted: 5625 Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is

poj 2891 Strange Way to Express Integers (解模线性方程组)

链接:poj 2891 题意:有一个数x,给定k组ai和ri,使得x%ai=ri 求x最小为多少 分析:求解模线性方程组 x = a1(mod m1) x = a2(mod m2) x = a3(mod m3) 先求解方程组前两项. x=m1*k1+a1=m2*k2+a2 -> m1*k1+m2*(-k2)=a2-a1 这个方程可以通过欧几里得求解出最小正整数的k1 则x=m1*k1+a1 显然x为两个方程的最小正整数解. 则这两个方程的通解为 X=x+k*LCM(m1,m2) -> X=x(

POJ-2891-Strange Way to Express Integers(线性同余方程组)

链接: https://vjudge.net/problem/POJ-2891 题意: Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following: Choose k different positive integers a1, a2, -, ak. For some

POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 15898 418373 161478614 149488440 1748022751 21618619576 810918992 241779667 1772616743 1953316358 125248280 2273149397 3849022001 2509433771 3885219405 35

poj 2891 Strange Way to Express Integers 2012-09-05

http://poj.org/problem?id=2891 解线性模方程组. 比较坑爹,数据比较大,很容易溢出. 1 Program poj2891; 2 3 var m:int64; 4 5 a,r:array[1..30000000]of int64; 6 7 ans,x,y,lcm:int64; 8 9 10 Procedure init; 11 12 var i,j:longint; 13 14 begin 15 16 m:=0; 17 18 readln(m); 19 20 for