[笔记]Learning to Rank算法介绍:RankSVM 和 IR SVM

之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to Rank的几类常用的方法:pointwise,pairwise,listwise。这篇博客就很多公司在实际中通常使用的pairwise的方法进行介绍,首先我们介绍相对简单的 RankSVM 和 IR SVM。

1. RankSVM

RankSVM的基本思想是,将排序问题转化为pairwise的分类问题,然后使用SVM分类模型进行学习并求解。

1.1 排序问题转化为分类问题

对于一个query-doc pair,我们可以将其用一个feature vector表示:x。而排序函数为f(x),我们根据f(x)的大小来决定哪个doc排在前面,哪个doc排在后面。即如果f(xi) > f(xj),则xi应该排在xj的前面,反之亦然。可以用下面的公式表示:

理论上,f(x)可以是任意函数,为了简单起见,我们假设其为线性函数:

如果这个排序函数f(x)是一个线性函数,那么我们便可以将一个排序问题转化为一个二元分类问题。理由如下:

首先,对于任意两个feature vector xi和 xj,在f(x)是线性函数的前提下,下面的关系都是存在的:

然后,便可以对xi和 xj的差值向量考虑二元分类问题。特别地,我们可以对其赋值一个label:

1.2 SVM模型解决排序问题

将排序问题转化为分类问题之后,我们便可以使用常用的分类模型来进行学习,这里我们选择了Linear SVM,同样的,可以通过核函数的方法扩展到 Nonlinear SVM。

如下面左图所示,是一个排序问题的例子,其中有两组query及其相应的召回documents,其中documents的相关程度等级分为三档。而weight vector w对应了排序函数,可以对query-doc pair进行打分和排序。

而下面右图则展示了如何将排序问题转化为分类问题。在同一个组内(同一个query下)的不同相关度等级的doc的feature vector可以进行组合,形成新的feature vector:x1-x2,x1-x3,x2-x3。同样的,label也会被重新赋值,例如x1-x2,x1-x3,x2-x3这几个feature vector的label被赋值成分类问题中的positive label。进一步,为了形成一个标准的分类问题,我们还需要有negative samples,这里我们就使用前述的几个新的positive feature vector的反方向向量作为相应的negative samples:x2-x1,x3-x1,x3-x2。另外,需要注意的是,我们在组合形成新的feature vector的时候,不能使用在原始排序问题中处于相同相似度等级的两个feature vector,也不能使用处于不同query下的两个feature vector。

        

1.2 SVM模型的求解过程

转化为了分类问题后,我们便可以使用SVM的通用方式进行求解。首先我们可以得到下面的优化问题:

通过将约束条件带入进原始优化问题的松弛变量中,可以进一步转化为非约束的优化问题:

加和的第一项代表了hinge loss,第二项代表了正则项。primal QP problem较难求解,如果使用通用的QP解决方式则费时费力,我们可以将其转化为dual problem,得到一个易于求解的形式:

而最终求解得到相应的参数后,排序函数可以表示为:

于是,RankSVM方法求解排序问题的步骤总结起来,如下图所示:

2. IR SVM

2.1 loss function的改造

上面介绍的RankSVM的基本思想是,将排序问题转化为pairwise的分类问题,然后使用SVM分类模型进行学习并求解。所以其在学习过程中,是使用了0-1分类损失函数(虽然实际上是用的替换损失函数hinge loss)。而这个损失函数的优化目标跟Information Retrieval的Evaluation常用指标(不仅要求各个doc之间的相对序关系正确,而且尤其重视Top的doc之间的序关系)还是存在gap的。所以有研究人员对此进行了研究,通过对RankSVM中的loss function进行改造从而使得优化目标更好地与Information Retrieval问题的常用评价指标相一致。

首先,我们通过一些例子来说明RankSVM在应用到文本排序的时候遇到的一些问题,如下图所示。

第一个问题就是,直接使用RankSVM的话,会将不同相似度等级的doc同等看待,不会加以区分。这在具体的问题中又会有两种形式:

1)Example 1中,3 vs 2 和 3 vs 1的两个pair,在0-1 loss function中是同等看待的,即它们其中任一对的次序的颠倒对loss function的增加大小是一样的。而这显然是不合理的,因为3 vs 1的次序颠倒显然要比 3 vs 2的次序的颠倒要更加严重,需要给予不同的权重来区分。

2)Example 2中,ranking-1是position 1 vs position 2的两个doc的位置颠倒了,ranking-2是position 3 vs position 4的两个doc的位置颠倒了,这两种情况在0-1 loss function中也是同等看待的。这显然也是不合理的,由于IR问题中对于Top doc尤其重视,ranking-1的问题要比ranking-2的问题更加严重,也是需要给予不同的权重加以区分。

第二个问题是,RankSVM对于不同query下的doc pair同等看待,不会加以区分。而不同query下的doc的数目是很不一样的。如Example 3所示,query-4的doc书目要更多,所以在训练过程中,query-4下的各个doc pair的训练数据对于模型的影响显然要比query-3下的各个doc pair的影响更大,所以最终结果的模型会有bias。

IR SVM针对以上两个问题进行了解决,它使用了cost sensitive classification,而不是0-1 classification,即对通常的hinge loss进行了改造。具体来说,它对来自不同等级的doc pair,或者来自不同query的doc pair,赋予了不同的loss weight:

1)对于Top doc,即相似度等级较高的doc所在的pair,赋予较大的loss weight。

2)对于doc数目较少的query,对其下面的doc pair赋予较大的loss weight。

2.2 IR SVM的求解过程

IR SVM的优化问题可以表示如下:

其中,代表了隶属于第k档grade pair的instance的loss weight值。这个值的确定有一个经验式的方法:对隶属于这一档grade pair的两个doc,随机交换它们的排序位置,看对于[email protected]的减少值,将所有的减少值求平均就得到了这个loss weight。可以想象,这个loss weight值越大,说明这个pair的doc对于整体评价指标的影响较大,所以训练时候的重要程度也相应较大,这种情况一般对应着Top doc,这样做就是使得训练结果尤其重视Top doc的排序位置问题。反之亦然。

这个参数则对应了query的归一化系数。可以表示为,即该query下的doc数目的倒数,这个很好理解,如果这个query下的doc数目较少,则RankSVM训练过程中相对重视程度会较低,这时候通过增加这个权重参数,可以适当提高这个query下的doc pair的重要程度,使得模型训练中能够对不同的query下的doc pair重视程度相当。

IR SVM的优化问题如下:

同样地,也需要将其转化为dual problem进行求解:

而最终求解得到相应的参数后,排序函数可以表示为:

于是,IR SVM方法求解排序问题的步骤总结起来,如下图所示:

版权声明:

本文由笨兔勿应所有,发布于http://www.cnblogs.com/bentuwuying。如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任。

时间: 2024-10-27 08:45:27

[笔记]Learning to Rank算法介绍:RankSVM 和 IR SVM的相关文章

Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart

之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to Rank的几类常用的方法:pointwise,pairwise,listwise.前面已经介绍了pairwise方法中的 RankSVM,IR SVM,和GBRank.这篇博客主要是介绍另外三种相互之间有联系的pairwise的方法:RankNet,LambdaRank,和LambdaMart. 1.

【学习排序】Learning to Rank中Pointwise关于PRank算法源码实现

最近终于忙完了Learning to Rank的作业,同时也学到了很多东西.我准备写几篇相关的文章简单讲述自己对它的理解和认识.第一篇准备讲述的就是Learning to Rank中Pointwise的认识及PRank算法的实现.主要从以下四个方面进行讲述: 1.学习排序(Learning to Rank)概念 2.基于点的排序算法(Pointwise)介绍 3.基于顺序回归(Ordinal Regression-based)的PRank排序算法 4.PRank算法Java\C++实现及总结 一

Learning To Rank之LambdaMART的前世今生

1.       前言 我们知道排序在很多应用场景中属于一个非常核心的模块,最直接的应用就是搜索引擎.当用户提交一个query,搜索引擎会召回很多文档,然后根据文档与query以及用户的相关程度对文档进行排序,这些文档如何排序直接决定了搜索引擎的用户体验.其他重要的应用场景还有在线广告.协同过滤.多媒体检索等的排序. LambdaMART是Learning To Rank的其中一个算法,适用于许多排序场景.它是微软Chris Burges大神的成果,最近几年非常火,屡次现身于各种机器学习大赛中,

【学习排序】 Learning to Rank 中Listwise关于ListNet算法讲解及实现

前一篇文章"Learning to Rank中Pointwise关于PRank算法源码实现"讲述了基于点的学习排序PRank算法的实现.该篇文章主要讲述Listwise Approach和基于神经网络的ListNet算法及Java实现.包括: 1.基于列的学习排序(Listwise)介绍 2.ListNet算法介绍 3.ListNet算法Java实现 LTR中单文档方法是将训练集里每一个文档当做一个训练实例,文档对方法是将同一个查询的搜索结果里任意两个文档对作为一个训练实例,文档列方法

Learning to rank 介绍

PS:文章主要转载自CSDN大神hguisu的文章"机器学习排序":          http://blog.csdn.net/hguisu/article/details/7989489      最近需要完成课程作业——分布式排序学习系统.它是在M/R.Storm或Spark架构上搭建分布式系统,并使用学习排序Pointwise.Pairwise和Listwise三大类算法实现对微软数据集(Microsoft Learning to Rank Datasets)进行学习排序,这篇

learning to rank

Learning to Rank入门小结 + 漫谈 Learning to Rank入门小结 Table of Contents 1 前言 2 LTR流程 3 训练数据的获取4 特征抽取 3.1 人工标注 3.2 搜索日志 3.3 公共数据集 5 模型训练 5.1 训练方法 5.1.1 Pointwise 5.1.2 Pairwise 5.1.3 Listwise 6 效果评估7 参考 6.1 NDCG(Normalized Discounted Cumulative Gain) 6.1.1 定

Learning to Rank 简介

转自:http://www.cnblogs.com/kemaswill/archive/2013/06/01/3109497.html,感谢分享! 本文将对L2R做一个比较深入的介绍,主要参考了刘铁岩.李航等人的几篇相关文献[1,2,3],我们将围绕以下几点来介绍L2R:现有的排序模型,为什么需要使用机器学习的方法来进行排序,L2R特征的选取,L2R训练数据的获取,L2R训练和测试,L2R算法分类和简介,L2R效果评价等. 1.现有的排序模型 排序(Ranking)一直是信息检索的核心研究问题,

机器学习算法介绍

什么是程序 计算机程序,是指为了得到某种结果而可以由计算机(等具有信息处理能力的装置)执行的代码化指令序列(或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列). 通俗讲,计算机给人干活,但它不是人,甚至不如狗更懂人的需要,那怎么让它干活呢,那就需要程序员来写程序,程序就是计算机能懂的语言(指令),然后计算机可以执行这些程序(指令),最终完成任务. int n = std::atoi(argv[1]); //求n的阶乘 double result = 1.0; for (int

【模式识别】Learning To Rank之RankBoost

RankBoost的思想比较简单,是二元Learning to rank的常规思路:通过构造目标分类器,使得pair之间的对象存在相对大小关系.通俗点说,把对象组成一对对的pair,比如一组排序r1>r2>r3>r4,那可以构成pair:(r1,r2)(r1,r3),(r1,r4),(r2,r3)(r3,r4),这样的pair是正值,也就是label是1:而余下的pair如(r2,r1)的值应该是-1或0.这样一个排序问题就被巧妙的转换为了分类问题.近来CV界很多又用这种learning