hdu4405:概率dp

题意:

总共有n+1个格子:0-n

初始情况下在 0号格子 每次通过掷骰子确定前进的格子数

此外 还有一些传送门可以瞬间从 u 点传送到 v 点(必须被传送)

求走到(或超过)n点总共需要掷多少次骰子

分析:

太弱 只想到了n^2的 dp方程 可惜n是100000...纠结半天又看了大牛的题解

用 dp[i]记录 走到第 i 个点时的期望 p[i]记录第 i 个点的概率。。、

这个概率记录的感觉比较神奇 ,我先开始想到的n^2是记录用 i 步 走到 j 点的概率

题解的这个概率应该是??平均后的???f反正就是走到这个点了的概率直接把步数省去了 dp方程就少了一维

dp[i]=次数 * p 那么 如果对于 i+j 点 dp[i+j]= (次数+1)*p*1/6 = ( dp[i]+p[i] ) / 6;

就可以写出转移方程了

同时在维护一个next数组记录 传送门 如果next[i]!=i 则证明不可能停在第 i 点 因此就不通过此点进行转移 直接continue,并把 i 的信息保存在next[i]中

统计答案的时候注意要统计 n到 n+5的和

ac代码:

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define MAXN 10000
int n,m;
int next[100010];
double dp[100010];
double p[100010];
void ini()
{
    memset(dp,0,sizeof(dp));
    memset(p,0,sizeof(p));
    for(int i=0;i<=100000;i++)
    {
        next[i]=i;
    }
    int u,v;
    for(int i=0;i<m;i++)
    {
        scanf("%d%d",&u,&v);
        next[u]=v;
    }
}
void solve()
{
    dp[0]=0;
    p[0]=1;
    for(int i=0;i<n;i++)
    {
        if(next[i]!=i)
        {
            p[next[i]]+=p[i];
            dp[next[i]]+=dp[i];
            p[i]=0;
            continue;
        }
        for(int j=1;j<=6;j++)
        {
            p[i+j]+=p[i]*1.0/6.0;
            dp[i+j]+=(dp[i]+p[i])*1.0/6.0;
        }
    }
    double ans=0;
    for(int i=n;i<n+6;i++)
    {
        ans+=dp[i];
    }
    printf("%.4f\n",ans);
}
int main()
{
    while(scanf("%d%d",&n,&m),m+n)
    {
        ini();
        solve();
    }
    return 0;
}
时间: 2024-11-08 00:47:14

hdu4405:概率dp的相关文章

hdu4405概率dp入门

Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1122    Accepted Submission(s): 762 Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 grids lab

hdu4405 概率dp

飞行棋游戏 问从0结束游戏的投色子次数期望是多少 设dp[i]表示i到n的期望,那么可以得到dp[i]=(dp[i+1]+dp[i+2]+dp[i+3]+dp[i+4]+dp[i+5]+dp[i+6])/6+1,另外注意飞行航道和处理离终点6以内的特殊点. #include <cstdio> #include <cstring> #include <algorithm> #include <vector> using namespace std; const

简单概率DP——hdu4405

题目描述: Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal probability to face up and the numbers on the faces are 1,2,3,4,5,6

HDU4405(期望DP)

又一道期望DP,其实这题与hdu4576那道概率DP很像(这道我也写了题解).那么这两道一道求概率,一道求期望,又能放在一起对比一下了,期望和概率的求法的不同. 先总结一句话:一般求概率DP或者是递推的问题,都是正着推,从初始状态往结束状态(结束状态一般是此类题要求的状态)推,所以先得到(或者说先已知)的是靠近初始状态的状态,所以想要求的当前状态是由可转移到此状态的前N可能个状态推过来的:而一般求期望DP,都是逆着推,从结束状态往初始状态(初始状态往往是此类题要求的状态)推,所以先得到(或者说先

hdu 4405 概率dp 2012年金华亚洲网络赛--虽然水,但是是自己独立做的第一道概率dp

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4405 e[i]:当前在位置i还需要走的步数期望 受刘汝佳的AC自动机那个后缀链接写法的启发,我的x[i]通过逆序算出来连续有"flight line "的时候,能到达的最远距离, rep(i,0,m) { scanf("%d%d",&xx,&yy); x[xx]=yy; } for(int i=n;i>=0;i--) if(x[i]!=-1 &

Codeforces 28C [概率DP]

/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队伍的期望. 思路: 概率dp dp[i][j][k]代表前i个浴室有j个人最长队伍是k的概率. 枚举第i个浴室的人数.然后转移的时候其实是一个二项分布. */ #include<bits/stdc++.h> using namespace std; int jilu[55]; double dp[

hdu 3076 ssworld VS DDD (概率dp)

///题意: /// A,B掷骰子,对于每一次点数大者胜,平为和,A先胜了m次A赢,B先胜了n次B赢. ///p1表示a赢,p2表示b赢,p=1-p1-p2表示平局 ///a赢得概率 比一次p1 两次p0*p1 三次 p0^2*p1,即A赢的概率为p1+p*p1+p^2*p1+...p^n*p1,n->无穷 ///即a_win=p1/(1-p);b_win=p2/(1-p); ///dp[i][j]表示a赢了j次,b赢了i次的概率 ///dp[i][j]=dp[i-1][j]*b_win+dp[

hdu 3853 概率DP 简单

http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意:有R*C个格子,一个家伙要从(0,0)走到(R-1,C-1) 每次只有三次方向,分别是不动,向下,向右,告诉你这三个方向的概率,以及每走一步需要耗费两个能量,问你走到终点所需要耗费能量的数学期望: 回头再推次,思想跟以前的做过的类似 注意点:分母为0的处理 #include <cstdio> #include <cstring> #include <algorithm>

hdu4089(公式推导)概率dp

题意:有n人都是仙剑5的fans,现在要在官网上激活游戏,n个人排成一个队列(其中主角Tomato最初排名为m), 对于队列中的第一个人,在激活的时候有以下五种情况: 1.激活失败:留在队列中继续等待下一次激活(概率p1) 2.失去连接:激活失败,并且出队列然后排到队列的尾部(概率p2) 3.激活成功:出队列(概率p3) 4.服务器瘫:服务器停止服务了,所有人都无法激活了(概率p4) 求服务器瘫痪并且此时Tomato的排名<=k的概率. 解法:ans[i][j]表示i个人出于第j个位置要到目的状

poj3071(概率DP)

题意:淘汰赛制,2^n(n<=7)个队员.给出相互PK的输赢概率矩阵.问谁最有可能赢到最后. 解法:ans[i][j]表示第i个队员第j轮胜出的概率.赢到最后需要进行n场比赛.算出每个人赢到最后的ans[i][n].写出序号的二进制发现一个规律,两个队员i.j如果碰到,那么一定是在第get(i,j)场比赛碰到的.get(i,j)计算的是i和j二进制不同的最高位,这个规律也比较明显. 代码: /****************************************************