linux中mmap系统调用原理分析与实现

参考文章:http://blog.csdn.net/shaoguangleo/article/details/5822110

linux中mmap系统调用原理分析与实现

1、mmap系统调用(功能)
      void* mmap ( void * addr , size_t len , int prot , int flags ,int fd , off_t offset )
      内存映射函数mmap, 负责把文件内容映射到进程的虚拟内存空间, 通过对这段内存的读取和修改,来实现对文件的读取和修改,而不需要再调用read,write等操作。

2、mmap系统调用(参数)
      1)addr: 指定映射的起始地址, 通常设为NULL, 由系统指定。
      2)length: 映射到内存的文件长度。
      3) prot:   映射区的保护方式, 可以是:
             PROT_EXEC: 映射区可被执行
             PROT_READ: 映射区可被读取
             PROT_WRITE: 映射区可被写入

4)flags: 映射区的特性, 可以是:
            MAP_SHARED:写入映射区的数据会复制回文件, 且允许其他映射该文件的进程共享。
            MAP_PRIVATE:对映射区的写入操作会产生一个映射区的复制(copy-on-write), 对此区域所做的修改不会写回原文件。

5)fd: 由open返回的文件描述符, 代表要映射的文件。
      6)offset: 以文件开始处的偏移量, 必须是分页大小的整数倍, 通常为0, 表示从文件头开始映射。

3、解除映射
      int munmap(void *start,size_t length)
     功能:取消参数start所指向的映射内存,参数length表示欲取消的内存大小。
    返回值:解除成功返回0,否则返回-1,错误原因存于errno中。

实例分析
mmap系统调用

4、虚拟内存区域
      虚拟内存区域是进程的虚拟地址空间中的一个同质区间,即具有同样特性的连续地址范围。一个进程的内存映象由下面几部分组成:程序代码、数据、BSS
和栈区域,以及内存映射的区域。

一个进程的内存区域可以通过查看:/proc/pid/maps
08048000-0804f000 r-xp 00000000 08:01 573748 /sbin/rpc.statd #text
0804f000-08050000 rw-p 00007000 08:01 573748 /sbin/rpc.statd #data
08050000-08055000 rwxp 00000000 00:00 0 #bss
040000000-40015000 r-xp 00000000 08:01 933965 /lib/ld2.3.2.so #text
40015000-40016000 rw-p 00014000 08:01 933965 /lib/ld-2.3.2.so #data

每一行的域为:start_end perm offset major:minor inode
       1) Start: 该区域起始虚拟地址
       2) End: 该区域结束虚拟地址
       3) Perm: 读、写和执行权限;表示对这个区域,允许进程做什么。这个域的最后一个字符要么是p表示私有的,要么是s表示共享的。
       4) Offset: 被映射部分在文件中的起始地址
       5) Major、minor:主次设备号
       6) Inode:索引结点

5、vm_area_struct
      Linux内核使用结构vm_area_struct()来描述虚拟内存区域,其中几个主要成员如下:
     1)unsigned long vm_start   虚拟内存区域起始地址
     2)unsigned long vm_end    虚拟内存区域结束地址

3)unsigned long vm_flags  该区域的标记。如:VM_IO和VM_RESERVED。VM_IO将该VMA标记为内存映射的IO区域,VM_IO会阻止系统将该区域包含在进程的存放转
存(core dump )中,VM_RESERVED标志内存区域不能被换出。

6、mmap设备操作
      映射一个设备是指把用户空间的一段地址关联到设备内存上。当程序读写这段用户空间的地址时,它实际上是在访问设备。

mmap设备方法需要完成什么功能?
      mmap方法是file_oprations结构的成员,在mmap系统调用发出时被调用。在此之前,内核已经完成了很多工作。mmap设备方法所需要做的就是建立
虚拟地址到物理地址的页表。
      int (*mmap) (struct file *, struct vm_area_struct *)

mmap如何完成页表的建立?
     方法有二:
     1)使用remap_pfn_range一次建立所有页表;
     2)使用nopage VMA方法每次建立一个页表。

构造页表的工作可由remap_pfn_range函数完成,原型如下:
     int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,unsigned long pfn, unsigned long size, pgprot_t prot)

vma:           虚拟内存区域指针
     virt_addr:   虚拟地址的起始值

pfn:             要映射的物理地址所在的物理页帧号,可将物理地址>>PAGE_SHIFT得到。
     size:           要映射的区域的大小。
     prot:            VMA的保护属性。

int memdev_mmap(struct file*filp, struct vm_area_struct *vma)
{
Vma->vm_flags |= VM_IO;
Vma->vm_flags |= VM_RESERVED;
if (remap_pfn_range(vma, vma->vm_start,
virt_to_phys(dev- >data)>> PAGE_SHIFT,
size,
vma->vm_page_prot))
return -EAGAIN;
return 0;
}

7、mmap设备方法实例
       1)memdev.源码

#ifndef _MEMDEV_H_
#define _MEMDEV_H_

#ifndef MEMDEV_MAJOR
#define MEMDEV_MAJOR 0   /*预设的mem的主设备号*/
#endif

#ifndef MEMDEV_NR_DEVS
#define MEMDEV_NR_DEVS 2    /*设备数*/
#endif

#ifndef MEMDEV_SIZE
#define MEMDEV_SIZE 4096
#endif

/*mem设备描述结构体*/
struct mem_dev                                     
{                                                        
  char *data;                      
  unsigned long size;       
};

#endif /* _MEMDEV_H_ */

2)memdev.c源码

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include

#include 
#include "memdev.h"

static int mem_major = MEMDEV_MAJOR;

module_param(mem_major, int, S_IRUGO);

struct mem_dev *mem_devp; /*设备结构体指针*/

struct cdev cdev;

/*文件打开函数*/
int mem_open(struct inode *inode, struct file *filp)
{
    struct mem_dev *dev;
    
    /*获取次设备号*/
    int num = MINOR(inode->i_rdev);

if (num >= MEMDEV_NR_DEVS) 
            return -ENODEV;
    dev = &mem_devp[num];
    
    /*将设备描述结构指针赋值给文件私有数据指针*/
    filp->private_data = dev;
    
    return 0; 
}

/*文件释放函数*/
int mem_release(struct inode *inode, struct file *filp)
{
  return 0;
}
static int memdev_mmap(struct file*filp, struct vm_area_struct *vma)
{
      struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/
      
      vma->vm_flags |= VM_IO;
      vma->vm_flags |= VM_RESERVED;

if (remap_pfn_range(vma,vma->vm_start,virt_to_phys(dev->data)>>PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot))
          return  -EAGAIN;
                
      return 0;
}

/*文件操作结构体*/
static const struct file_operations mem_fops =
{
  .owner = THIS_MODULE,
  .open = mem_open,
  .release = mem_release,
  .mmap = memdev_mmap,
};

/*设备驱动模块加载函数*/
static int memdev_init(void)
{
  int result;
  int i;

dev_t devno = MKDEV(mem_major, 0);

/* 静态申请设备号*/
  if (mem_major)
    result = register_chrdev_region(devno, 2, "memdev");
  else  /* 动态分配设备号 */
  {
    result = alloc_chrdev_region(&devno, 0, 2, "memdev");
    mem_major = MAJOR(devno);
  }  
  
  if (result < 0)
    return result;

/*初始化cdev结构*/
  cdev_init(&cdev, &mem_fops);
  cdev.owner = THIS_MODULE;
  cdev.ops = &mem_fops;
  
  /* 注册字符设备 */
  cdev_add(&cdev, MKDEV(mem_major, 0), MEMDEV_NR_DEVS);
   
  /* 为设备描述结构分配内存*/
  mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
  if (!mem_devp)    /*申请失败*/
  {
    result =  - ENOMEM;
    goto fail_malloc;
  }
  memset(mem_devp, 0, sizeof(struct mem_dev));
  
  /*为设备分配内存*/
  for (i=0; i < MEMDEV_NR_DEVS; i++) 
  {
        mem_devp[i].size = MEMDEV_SIZE;
        mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
        memset(mem_devp[i].data, 0, MEMDEV_SIZE);
  }
    
  return 0;

fail_malloc: 
  unregister_chrdev_region(devno, 1);
  
  return result;
}

/*模块卸载函数*/
static void memdev_exit(void)
{
  cdev_del(&cdev);   /*注销设备*/
  kfree(mem_devp);     /*释放设备结构体内存*/
  unregister_chrdev_region(MKDEV(mem_major, 0), 2); /*释放设备号*/
}

MODULE_AUTHOR("yinjiabin);
MODULE_LICENSE("GPL");

module_init(memdev_init);
module_exit(memdev_exit);

3)测试程序源码

#include 
#include
#include
#include
#include
#include

int main()
{
 int fd;
 char *start;
 //char buf[100];
 char *buf;
 
 /*打开文件*/
 fd = open("/dev/memdev0",O_RDWR);
        
 buf = (char *)malloc(100);
 memset(buf, 0, 100);
 start=mmap(NULL,100,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
 
 /* 读出数据 */
 strcpy(buf,start);
 sleep (1);
 printf("buf 1 = %s\n",buf);

/* 写入数据 */
 strcpy(start,"Buf Is Not Null!");
 
 memset(buf, 0, 100);
 strcpy(buf,start);
 sleep (1);
 printf("buf 2 = %s\n",buf);

munmap(start,100); /*解除映射*/
 free(buf);
 close(fd);  
 return 0; 
}

版权声明:本文为【借你一秒】原创文章,转载请标明出处。

时间: 2024-10-12 13:23:10

linux中mmap系统调用原理分析与实现的相关文章

linux系统调用原理分析

自己想看看别人开发的项目,吸收下经验,然后找到开源中国,有些网上的大牛自己也开发出了开源中国的客户端 在网上看到很多网友说,下载下来安装不了之类的东西,在我这里我带个路,希望对那些朋友有些帮助. https://github.com/jimneylee/JLRubyChina-iPhone   开源中国源码地址 界面如下: 很多的朋友会直接点击Download ZIP,然后下载下来,打开,打开后就直接CocoaPods更新运行如下命令行 $ pod install 下载了其他的sdk下来后,以为

Linux中块设备驱动程序分析

基于<Linux设备驱动程序>书中的sbull程序以对Linux块设备驱动总结分析. 开始之前先来了解这个块设备中的核心数据结构: struct sbull_dev { int size;                       /* Device size in sectors */ u8 *data;                       /* The data array */ short users;                    /* How many users

Linux中brk()系统调用,sbrk(),mmap(),malloc(),calloc()的异同【转】

转自:http://blog.csdn.net/kobbee9/article/details/7397010 brk和sbrk主要的工作是实现虚拟内存到内存的映射.在GNUC中,内存分配是这样的:       每个进程可访问的虚拟内存空间为3G,但在程序编译时,不可能也没必要为程序分配这么大的空间,只分配并不大的数据段空间,程序中动态分配的空间就是从这一块分配的.如果这块空间不够,malloc函数族(realloc,calloc等)就调用sbrk函数将数据段的下界移动,sbrk函数在内核的管理

【翻译】TCP backlog在Linux中的工作原理

原文How TCP backlog works in Linux水平有限,难免有错,欢迎指出!以下为翻译: 当应用程序通过系统调用listen将一个套接字(socket)置为LISTEN状态时,需要为该套接字指定一个backlog参数,该参数通常被描述为用来限制进来的连接队列长度(queue of incoming connections). 由于TCP协议的三次握手机制,一个进来的套接字连接在进入ESTABLISHED状态并且可以被accept调用返回给应用程序之前,会经历中间状态SYN RE

Linux中Postfix邮件原理介绍(一)

邮件相关协议 SMTP(Simple Mail Transfer Protocol)即简单邮件传输协议, 工作在TCP的25端口.它是一组用于由源地址到目的地址传送邮件的规则,由它来控制信件的中转方式.跟名字一样smtp非常简单,无法做到认证,邮件存放等功能. POP3(Post Office Protocol)邮局协议第3版,工作在TCP的110端口.本协议主要用于支持使用客户端远程管理在服务器上的电子邮件.POP 协议支持“离线”邮件处理.其具体过程是:邮件发送到服务器上,电子邮件客户端调用

Linux中ifreq 结构体分析和使用

结构原型: struct ifreq{#define IFHWADDRLEN 6 union {  char ifrn_name[IFNAMSIZ];   } ifr_ifrn;  union {  struct sockaddr ifru_addr;  struct sockaddr ifru_dstaddr;  struct sockaddr ifru_broadaddr;  struct sockaddr ifru_netmask;  struct  sockaddr ifru_hwadd

Linux中ifreq 结构体分析和使用 及其在项目中的简单应用

[基础知识说明] 结构原型: /* * Interface request structure used for socket * ioctl's.  All interface ioctl's must have parameter * definitions which begin with ifr_name.  The * remainder may be interface specific. */ struct ifreq {#define IFHWADDRLEN 6 union { 

Java中的递归原理分析

解释:程序调用自身的编程技巧叫做递归. 程序调用自身的编程技巧称为递归( recursion).递归做为一种算法在程序设计语言中广泛应用. 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量.递归的能力在于用有限的语句来定义对象的无限集合. 递归的三个条件: 边界条件 递归前进段 递归返回段 当边界条件不满足时,递归前进:当

linux中fork()系统调用总结

由fork创建的新进程被称为子进程(child process).该函数被调用一次,但返回两次.两次返回的区别是子进程的返回值是0,而父进程的返回值则是新进程(子进程)的进程 id.将子进程id返回给父进程的理由是:因为一个进程的子进程可以多于一个,没有一个函数使一个进程可以获得其所有子进程的进程id.对子进程来说,之所以fork返回0给它,是因为它随时可以调用getpid()来获取自己的pid:也可以调用getppid()来获取父进程的id.(进程id 0总是由交换进程使用,所以一个子进程的进