【CODEVS2602】最短路径问题

Description

平面上有n个点(n<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离。现在的任务是找出从一点到另一点之间的最短路径。

Input

第一行为整数n。

第2行到第n+1行(共n行),每行两个整数x和y,描述了一个点的坐标。

第n+2行为一个整数m,表示图中连线的个数。

此后的m行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线。

最后一行:两个整数s和t,分别表示源点和目标点。

Output

仅一行,一个实数(保留两位小数),表示从s到t的最短路径长度。

Sample Input

5

0 0

2 0

2 2

0 2

3 1

5

1 2

1 3

1 4

2 5

3 5

1 5

Sample Output

3.41

#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int x[110],y[110];
struct edtype
{
    int next,to;
    double w;
}e[20010]; //开得足够大!!!
bool vis[110];
int head[110],q[110];
double dis[110];
int cnt=0,h,t,s;
void ins(int u,int v,double w)
{
    e[++cnt].to=v; e[cnt].w=w; e[cnt].next=head[u]; head[u]=cnt;
}

void spfa()
{
    memset(dis,127,sizeof(dis));
    int h=0, t=1;
    dis[s]=0; vis[s]=true; q[t]=s;
    while (h!=t)
    {
        int now=q[++h]; if (h==101) h=0;
        for (int i=head[now];i;i=e[i].next)
        {
            int v=e[i].to;
            if (dis[v]>dis[now]+e[i].w)
            {
                dis[v]=dis[now]+e[i].w;
                if (!vis[v])
                {
                    q[++t]=v;
                    if (t==101) t=0;
                    vis[v]=true;
                }
            }
        }
        vis[now]=false;
    }
}

int main()
{
    memset(head,0,sizeof(head));
    memset(q,0,sizeof(q));
    memset(vis,false,sizeof(vis));
    int n,m,u,v,w;
    scanf("%d",&n);
    for (int i=1;i<=n;i++) scanf("%d%d",&x[i],&y[i]);
    scanf("%d",&m);
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d",&u,&v);
        double w=sqrt(pow(x[u]-x[v],2)+pow(y[u]-y[v],2));
        ins(u,v,w); ins(v,u,w);
    }
    scanf("%d%d",&s,&t);
    spfa();
    printf("%.2lf",dis[t]);
    return 0;
}
时间: 2024-07-29 04:37:14

【CODEVS2602】最短路径问题的相关文章

ACM: HDU 3790 最短路径问题-Dijkstra算法

HDU 3790 最短路径问题 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的. Input 输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p.最后一行是

最短路径算法专题1----弗洛伊德

由于最短路径算法我认为比较重要,所以分成几个专题来慢慢细化去磨它,不能一口气吃个胖子嘛. 首先在说算法之前,先说清楚什么叫做最短路径. 题目一般会给你一张图,然后告诉你很多地方,然后告诉你各个地方之间的路程有多远,要你求出,两点间的最短距离,注意,题目给出的两点间的距离未必是最短的,可能通过第三个点转换之后达到更短.实际其实也是这样的,有时候两个地方并没有直线的道路只有曲线的绕路. 算法的思路: 1.用二维数组列出所有的距离,达到不了的用最大距离表示,如9999999 2.循环数组上面的每一个点

postgresql+postgis+pgrouting实现最短路径查询(1)---线数据的处理和建立拓扑

准备一个线shp数据,并将其导入postgres里面,postgres安装postgis和pgrouting两个插件(方法见http://www.cnblogs.com/nidaye/p/4553522.html).线数据的字段如下:注意字段的名称,省的出现不必要的麻烦. 1.ALTER TABLE beijing_line ADD COLUMN source integer; ALTER TABLE beijing_line ADD COLUMN target integer; ALTER T

算法导论——最短路径Dijkstra算法

package org.loda.graph; import org.loda.structure.IndexMinQ; import org.loda.structure.Stack; import org.loda.util.In; /** * * @ClassName: Dijkstra * @Description: Dijkstra最短路径算法--贪心算法 * @author minjun * @date 2015年5月27日 下午4:49:27 * */ public class D

最短路径(四)—Bellman-Ford的队列优化(邻接表)

上一节我们写了Bellman-Ford算法解决负权边的问题: 邻接表存储图: n个顶点,m条边. 数组实现邻接表.对每一条边进行1-m编号.用u,v,w三个数组来记录每条边的信息,即u[i],v[i],w[i]表示第i条边是从第 u[i]号顶点到v[i]号顶点且权值为w[i]. first数组的1-n号单元格分别用来存储1-n号顶点的第一条边的编号,初始的时候因为没有边加入所有都是-1.即first[u[i]]保存顶点u[i]的第一条边的编号,next[i]存储"编号为i的边"的&qu

最短路径(Floyd法)

最短路径法: 算法的主要思想是:单独一条边的路径也不一定是最佳路径. 从任意一条单边路径开始.所有两点之间的距离是边的权的和,(如果两点之间没有边相连, 则为无穷大). 对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短.如果是更新它. 先把所有的结果都计算出来放在数组里面,然后根据需要输出所需要的两点之间的最短路径.用了三个循环来实现 还有一个要Mark一下的是:不如一个数组s[i][j]:那可以用这个数组来存放三个数 i,j和s[i][j]:

最短路径算法——迪杰斯特拉算法(Dijkstra)

图结构中应用的最多的就是最短路径的查找了,关于最短路径查找的算法主要有两种:迪杰斯特拉算法(Dijkstra)和Floyd算法. 其中迪杰斯特拉算法(Dijkstra)实现如下: 原理就是不断寻找当前的最优解: void main() { int V[Max][Max]={0,8,32,Infinity,Infinity, 12,0,16,15,Infinity, Infinity,29,0,Infinity,13, Infinity,21,Infinity,0,7, Infinity,Infi

[BZOJ 1576] 安全路径 最短路径树 路径压缩

题意 给定一张 n 个点 m 条边的图, 保证对于任意的点 i , 从点 1 到点 i 的最短路唯一. 对于任意的点 i , 询问: 将 1 到 i 的最短路中最后一条边删去之后, 从 1 到 i 的最短路 . n <= 100000, m <= 200000 . 分析 首先跑 Dijsktra , 构建出最短路径树. 接下来考虑每条非树边 E[p] = (u, v, d) 对答案的影响, 它能且仅能影响到点 u, v 之上, LCA(u, v) 之下的点的答案. (包括 u, v, 不包括

四大最短路径算法比较

  Floyd Dijkstra Bellman-Ford 队列优化的Bellman-ford 空间复杂度 O(N²) O(M) O(M) O(M) 时间复杂度 O(N3) O((M+N)logN) O(NM) O(NM) 适用情况 稠密图,和顶点关系密切 稠密图,和顶点关系密切 稀疏图,和边关系密切 稀疏图,和边关系密切 负权 可以解决 不能解决 可以解决 可以解决 注1:N为定点数,M为边数 注2:  Floyd的编码复杂度较小,均摊到每个点上的时间复杂度并不算太高,如果是求所有点对间的最短