对原来的边(u, v) 方向定为u->v当w[u] > w[v]
最大Set是max{u到达的点集合}
Crazy Bobo
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 382 Accepted Submission(s): 116
Problem Description
Bobo has a tree,whose vertices are conveniently labeled by 1,2,...,n.Each node has a weight wi.
All the weights are distrinct.
A set with m nodes v1,v2,...,vm is
a Bobo Set if:
- The subgraph of his tree induced by this set is connected.
- After we sort these nodes in set by their weights in ascending order,we get u1,u2,...,um,(that
is,wui<wui+1 for
i from 1 to m-1).For any node x in
the path from ui to ui+1(excluding ui and ui+1),should
satisfy wx<wui.
Your task is to find the maximum size of Bobo Set in a given tree.
Input
The input consists of several tests. For each tests:
The first line contains a integer n (1≤n≤500000).
Then following a line contains n integers w1,w2,...,wn (1≤wi≤109,all
the wi is
distrinct).Each of the following n-1 lines contain 2 integers ai and bi,denoting
an edge between vertices ai and bi (1≤ai,bi≤n).
The sum of n is not bigger than 800000.
Output
For each test output one line contains a integer,denoting the maximum size of Bobo Set.
Sample Input
7 3 30 350 100 200 300 400 1 2 2 3 3 4 4 5 5 6 6 7
Sample Output
5
Source
2015 Multi-University Training Contest 3
#pragma comment(linker, "/STACK:1024000000,1024000000") #include <iostream> #include <cstring> #include <cstdio> #include <algorithm> using namespace std; typedef long long ll; #define prt(k) cout<<#k" = "<<k<<endl; const int N = 501000; int dp[N], g[N], w[N]; struct edge { int v, next; }e[N<<1]; int head[N], mm; void add(int u, int v) { e[mm].v= v; e[mm].next = head[u]; head[u] = mm++; } int pa[N]; int up(int u) { if (~g[u]) return g[u]; g[u] = 1; int v = pa[u]; if (w[u] > w[v]) g[u] = up(v) + 1; return g[u]; } int n; pair<int, int> p[N]; int main() { while (scanf("%d", &n)==1) { for (int i=1;i<=n;i++) scanf("%d", w+i), p[i]=make_pair(w[i], i); sort(p+1, p+n+1); mm = 0; memset(head, -1, sizeof head); for (int i=0;i<n-1;i++) { int u, v; scanf("%d%d", &u, &v); add(u, v); add(v, u); } memset(dp, -1, sizeof dp); memset(g, -1, sizeof g); pa[1] = 1; g[1] = 1; int ans = 1; for (int i=n;i>=1;i--) { int u = p[i].second; dp[u] = 1; for (int j=head[u];~j;j=e[j].next) { int v = e[j].v; if (w[u] < w[v]) dp[u] += dp[v]; } ans = max(ans, dp[u]); } printf("%d\n", ans); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。