POJ 2299 Ultra-QuickSort (树状数组)

前段时间用归并排序写了这题,发现树状数组也能解这题,就去学习了一下

首先先来看一个序列   6 1 2 7 3 4 8 5,此序列的逆序数为5+3+1=9。冒泡法可以直接枚举出逆序数,但是时间复杂度太高O(n^2)。冒泡排序的原理是枚举每一个数组,然后找出这个数后面有多少个数是小于这个数的,小于它逆序数+1。仔细想一下,如果我们不用枚举这个数后面的所有数,而是直接得到小于这个数的个数,那么效率将会大大提高。

总共有N个数,如何判断第i+1个数到最后一个数之间有多少个数小于第i个数呢?不妨假设有一个区间 [1,N],只需要判断区间[i+1,N]之间有多少个数小于第i个数。如果我们把总区间初始化为0,然后把第i个数之前出现过的数都在相应的区间把它的值定为1,那么问题就转换成了[i+1,N]值的总和。再仔细想一下,区间[1,i]的值+区间[i+1,N]的值=区间[1,N]的值(i已经标记为1),所以区间[i+1,N]值的总和等于N-[1,i]的值!因为总共有N个数,不是比它小就是比它(大或等于)。

现在问题已经转化成了区间问题,枚举每个数,然后查询这个数前面的区间值的总和,i-[1,i]既为逆序数。

//树状数组
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
#define MAX 500010
int c[MAX];
int aa[MAX];
int n;
typedef struct nano{
    int val;
    int order;
}node;
node in[MAX];
int lowbit(int x)
{
    return x&(-x);
}
void update(int x,int val)
{
    while(x<=n){
        c[x]+=val;
        x+=lowbit(x);
    }
}
int sum(int x)
{
    int s=0;
    while(x>=1)
    {
        s+=c[x];
        x-=lowbit(x);
    }
    return s;//一开始竟然忘记写了这个语句,还以为树状数组写错了呢
}
bool cmp(node a,node b){
    return a.val<b.val;
}
int main(int argc, char *argv[])
{
    //freopen("2299.in", "r", stdin);
    while(scanf("%d",&n)==1&&n){
        for(int i=1;i<=n;++i)
        {
            scanf("%d",&in[i].val);
            in[i].order=i;
        }
        sort(in+1,in+n+1,cmp);
        for(int i=1;i<=n;++i)
            aa[in[i].order]=i;//离散化到小范围来
        memset(c,0,sizeof(c));
        long long ans=0;
        for(int i=1;i<=n;++i)
        {
            update(aa[i], 1);
            ans+=(i-sum(aa[i]));
        }
        printf("%lld\n",ans);
    }
    return 0;
}
时间: 2025-01-14 20:39:00

POJ 2299 Ultra-QuickSort (树状数组)的相关文章

poj 2299 Ultra-QuickSort 离散化 + 树状数组

题目链接:http://poj.org/problem?id=2299 离散化 + 树状数组 教科书例题般的题目 #include <iostream> #include <cstdio> #include <cstring> #include <queue> #include <cmath> #include <vector> #include <stack> #include <set> #include

poj 2299 Ultra-QuickSort (树状数组+离散化)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 48257   Accepted: 17610 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swappin

poj 2299 Ultra-QuickSort(树状数组求逆序数+离散化)

题目链接:http://poj.org/problem?id=2299 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in

POJ 2299 Ultra-QuickSort(树状数组+离散化)

http://poj.org/problem?id=2299 题意:给出一组数,求逆序对. 思路: 这道题可以用树状数组解决,但是在此之前,需要对数据进行一下预处理. 这道题目的数据可以大到999,999,999,但数组肯定是无法开这么大的,但是每组数据最多只有500000个,那么,怎么办呢,离散化! 离散化,也就是将数据和1~n做一一映射. 比如: 9 1 0 5 4 离散化之后变成 5 2 1 4 3 这样的话,就可以放心的开数组啦! 至于树状数组的计算过程,我懒得写了,直接摘抄一下大神的h

Poj 2299 - Ultra-QuickSort 离散化,树状数组,逆序对

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 52306   Accepted: 19194 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swappin

POJ 2299 Ultra-QuickSort(树状数组)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 47014   Accepted: 17182 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swappin

poj 2299 Ultra-QuickSort(树状数组 / 求逆序数)

Ultra-QuickSort Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 46080   Accepted: 16763 Description In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swappin

hdu 1541/poj 2352:Stars(树状数组,经典题)

Stars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4052    Accepted Submission(s): 1592 Problem Description Astronomers often examine star maps where stars are represented by points on a plan

POJ 2892 Tunnel Warfare (树状数组+二分)

题目大意: 三个操作 D pos  将pos位置摧毁,让它和周围不相连. Q pos 问和pos 相连的有多少个村庄. R 修复最近摧毁的村庄. 思路分析: 树状数组记录这个区间有多少个1. 如果  [s-e] 有e-s+1个1 的话.那么这个区间是相连的. 这样的话,我们就可以用二分的办法求出与某个位置最大相连的数量. 还有这里二分 while(l<=r) { if(满足) { ans=mid; l=mid+1; } else r=mid-1; } #include <cstdio>