时间: 2024-10-01 03:26:43
机器学习Ng-01
机器学习Ng-01的相关文章
机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)
最近在Coursera上看吴大神的Machine Learning,感觉讲的真的很棒.所以觉得应该要好好做做笔记,一方面是加强自己对ML中一些方法的掌握程度和理解,另一方面也能方便自己或者同样爱好ML的同学. 线性回归(Linear Regression) 线性回归(Linear Regression)应该是机器学习中最基本的东西了.所谓回归,想必大家在高中时期的课程里面就接触过,给定一系列离散的点(x0,y0),求一条直线 f(x)=ax+b 以使得最小.在machine learning 中
机器学习-Python 01
机器学习中最常用最流行的语言工具现阶段应该是Python, 这篇文章主要介绍一些常用的Python语法知识.本篇博文适合那些有其他语言基础的程序员们,如果一点基础都没有,我建议先跳过.博主以前是做移动端开发的,所以本篇文章主要是为那些准备知识提升或者转行的程序员们准备的,可以让你们以最快的速度进入到Python的开发环境. 好了,首先在正式介绍Python的开发之前,大家都知道需要配置开发环境和IDE. 这里我介绍一下我常用的,叫做Anaconda, 大家可以自行下载,下载过后不用另外配置Pyt
【华为云技术分享】机器学习(01)——机器学习简介
最近在研究机器学习,随手将学习的过程记录下来,方面自己的学习与回顾 1. 机器学习是什么? 机器学习(Machine Learning,ML)是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能的一门科学技术. 它使用计算机技术,应用微积分.概率论.统计学.逼近论.凸分析.算法等多种不同的理论与学科,针对分析目标建立有针对性的数据模型,通过对过往历史数据的学习(分类.回归.聚类等),完成基本算法模型,并能通过后续持续的学习(数据输入),
机器学习基石-01
机器学习入门———01
将数组转化为矩阵:np.mat(mylist) np.zeros([3,5]):3列5行的零矩阵 np.ones([3,5]):3列5行的1矩阵 np.eye(3) 3*3单位矩阵 sum(mymatrix):矩阵个元素之和 multipy(matrix1,matrix2)矩阵各元素之积 matrix.T:矩阵转置 linalg.det(matrix):行列式 linalg.inv():逆 linalg.matrix_rank()秩 L2范数:linalg.norm() 闵可夫斯基距离:一组
机器学习随笔01 - k近邻算法
算法名称: k近邻算法 (kNN: k-Nearest Neighbor) 问题提出: 根据已有对象的归类数据,给新对象(事物)归类. 核心思想: 将对象分解为特征,因为对象的特征决定了事对象的分类. 度量每个特征的程度,将其数字化. 所有特征值构成元组,作为该对象的坐标. 计算待检测对象和所有已知对象的距离,选择距离最接近的k个已知对象 (k近邻中的k来源于此). 这k个对象中出现次数最多的分类就是待检测对象的分类. 重要前提: 需要有一批已经正确归类了的对象存在.也就是通常说的训练数据. 重
机器学习笔记04:逻辑回归(Logistic regression)、分类(Classification)
之前我们已经大概学习了用线性回归(Linear Regression)来解决一些预测问题,详见: 1.<机器学习笔记01:线性回归(Linear Regression)和梯度下降(Gradient Decent)> 2.<机器学习笔记02:多元线性回归.梯度下降和Normal equation> 3.<机器学习笔记03:Normal equation及其与梯度下降的比较> 说明:本文章所有图片均属于Stanford机器学课程,转载请注明出处 面对一些类似回归问题,我们可
机器学习笔记02:多元线性回归、梯度下降和Normal equation
在<机器学习笔记01>中已经讲了关于单变量的线性回归以及梯度下降法.今天这篇文章作为之前的扩展,讨论多变量(特征)的线性回归问题.多变量梯度下降.Normal equation(矩阵方程法),以及其中需要注意的问题. 单元线性回归 首先来回顾一下单变量线性回归的假设函数: Size(feet2) Price($1000) 2104 460 1416 232 1534 315 852 178 - - 我们的假设函数为 hθ(x)=θ0+θ1x 多元线性回归 下面介绍多元线性回归(Linear R
【Python数据挖掘课程】五.线性回归知识及预测糖尿病实例
今天主要讲述的内容是关于一元线性回归的知识,Python实现,包括以下内容: 1.机器学习常用数据集介绍 2.什么是线性回顾 3.LinearRegression使用方法 4.线性回归判断糖尿病 前文推荐: [Python数据挖掘课程]一.安装Python及爬虫入门介绍 [Python数据挖掘课程]二.Kmeans聚类数据分析及Anaconda介绍 [Python数据挖掘课程]三.Kmean
巢哑偕倥乇椭煞谙暗逞帕俸
IEEE Spectrum 杂志发布了一年一度的编程语言排行榜,这也是他们发布的第四届编程语言 Top 榜. 据介绍,IEEE Spectrum 的排序是来自 10 个重要线上数据源的综合,例如 Stack Overflow.Twitter.Reddit.IEEE Xplore.GitHub.CareerBuilder 等,对 48 种语言进行排行. 与其他排行榜不同的是,IEEE Spectrum 可以让读者自己选择参数组合时的权重,得到不同的排序结果.考虑到典型的 Spectrum 读者需求