[HAOI2008]圆上的整点

题目描述

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

输入输出格式

输入格式:

r

输出格式:

整点个数

输入输出样例

输入样例#1:

4

输出样例#1:

4

说明

n<=2000 000 000

接下来枚举d,a

为什么要除d?

因为他们不互质,a*b是完全平方数≠a,b都是完全平方数

记住还要a*a,b*b互质

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 #include<cmath>
 6 using namespace std;
 7 long long r,k,ans,p,q;
 8 int tot;
 9 long long ys[500001];
10 void Dvide(long long x)
11 {int i;
12   for (i=1;i<=sqrt(x);i++)
13     if (x%i==0)
14       {
15     if (i*i==x)
16       {
17         tot++;
18         ys[tot]=i;
19       }
20     else
21       {
22         tot++;
23         ys[tot]=i;
24         tot++;
25         ys[tot]=x/i;
26       }
27       }
28 }
29 long long GCD(long long a,long long b)
30 {
31   if (b==0)
32     return a;
33   return GCD(b,a%b);
34 }
35 int main()
36 {int i;
37   cin>>r;
38   Dvide(2*r);
39   for (i=1;i<=tot;i++)
40     {
41       for (p=1;p*p<(r/ys[i]);p++)
42     {
43       q=sqrt(2*r/ys[i]-p*p);
44       if (p*p+q*q==2*r/ys[i])
45         if (GCD(p*p,q*q)==1) ans++;
46     }
47     }
48   cout<<ans*4+4;
49 }
时间: 2024-10-25 23:00:18

[HAOI2008]圆上的整点的相关文章

BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 So

BZOJ 1041 [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 鸣谢:http://blog.csdn.net/csyzcyj/article/details/10044629  http://hzwer.com/1457.html 这么一到水题竟然卡了我一晚上,想起来确

1041: [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Status][Discuss] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT 科普视频 /*

bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Status] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input r Output 整点个数 Sample Input 4 Sample Output 4 HINT n<=2000 000 000 Source 這道題可用本原勾股數組解,由於本原

【BZOJ 1041】 [HAOI2008]圆上的整点

1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 2196  Solved: 941 [Submit][Status] Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input r Output 整点个数 Sample Input 4 Sample Output 4 HINT n<=2000 000 000 接下来枚举d,a,判断求出的b是否和题意即可

bzoj千题计划127:bzoj1041: [HAOI2008]圆上的整点

http://www.lydsy.com/JudgeOnline/problem.php?id=1041 设 X>0 ,Y>0 X^2 + Y^2 = R^2 X^2 = R^2-Y^2 = (R+Y)(R-Y) 令  d=gcd(R+Y,R-Y),A=(R+Y)/d,B=(R-Y)/d 则 gcd(A,B)=1,且A != B X^2= d^2 *A * B 所以 A * B 为 完全平方数 又因为 gcd(A,B)=1 ,A!=B,所以 A,B 都是 完全平方数 令 a= 根号A,b=根号

BZOJ 1041 HAOI2008 圆上的整点 数论

题目大意:给定一个半径为为r的圆x^2+y^2=r^2,求圆上多少个点的坐标为整数 卡了很久的一道题...我之前用了两个公式,理论上可以O(√n)出解,可惜这两个公式并不能涵盖所有勾股数... 于是去找了下题解,发现这样一种方法:(原帖地址: http://www.cppblog.com/zxb/archive/2010/10/18/130330.html ) x^2+y^2=r^2 化简为 y^2=(r-x)(r+x) 我们令d=gcd(r-x,r+x) 则(r-x)/d与(r+x)/d一定互

[BZOJ1041] [HAOI2008] 圆上的整点 (数学)

Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Sample Input 4 Sample Output 4 HINT Source Solution 网上有一个很好的证明 1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef long long ll; 4 5 ll gcd(ll a,

【bzoj1041】[HAOI2008]圆上的整点 数论

题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数论 #include <cmath> #include <cstdio> typedef long long ll; ll judge(ll k) { ll t = (ll)sqrt(k); return t * t == k ? t : 0; } ll gcd(ll a , ll b