Java并发编程的艺术下载 𦄭

下载地址: http://www.gqylpy.com/di/11

《Java并发编程的艺术》PDF高清完整版-下载

内容简介

  并发编程领域的扛鼎之作,作者是阿里和1号店的资深Java技术专家,对并发编程有非常深入的研究,《Java并发编程的艺术》是他们多年一线开发经验的结晶。本书的部分内容在出版早期发表在Java并发编程网和InfoQ等技术社区,得到了非常高的评价。它选取了Java并发编程中核心的技术进行讲解,从JDK源码、JVM、CPU等多角度全面剖析和讲解了Java并发编程的框架、工具、原理和方法,对Java并发编程进行了为深入和透彻的阐述。

  《Java并发编程的艺术》内容涵盖Java并发编程机制的底层实现原理、Java内存模型、Java并发编程基础、Java中的锁、并发容器和框架、原子类、并发工具类、线程池、Executor框架等主题,每个主题都做了深入的讲解,同时通过实例介绍了如何应用这些技术。

作者简介

  方腾飞(花名清英,英文名kiral),

  蚂蚁金服集团技术专家,从事Java开发近10年。5年以上的团队管理、项目管理和敏捷开发经验,崇尚团队合作。曾参与CMS、电子海图、SOC、ITIL、电子商务网站和信贷管理系统等项目。目前在蚂蚁金服网商银行贷款管理团队负责数据采集平台开发工作。与同事合作开发了tala code Review插件,深受阿里数千名工程师拥趸,并开发过开源工具jdbcutil(https://github.com/kiral/utils)。创办了并发编程网,组织翻译了百余篇国外优秀技术文章,并曾为InfoQ撰写“聊聊并发”专栏,在《程序员》杂志撰写敏捷实践系列文章

魏 鹏,

  阿里巴巴集团技术专家,在阿里巴巴中国网站技术部工作多年,曾担任中国网站交易平台架构师,主导了交易系统服务化工作,设计实现的数据迁移系统高效地完成了阿里巴巴中国网站交易数据到阿里巴巴集团的迁移工作。目前在阿里巴巴共享业务事业部从事Java应用容器Pandora和服务框架HSF的相关工作,其中Java应用容器Pandora是阿里巴巴中间件运行的基础,而服务框架HSF则是阿里巴巴集团实现服务化的主要解决方案,二者在阿里巴巴拥有为广泛的使用量。个人平时喜欢阅读技术书籍,翻译一些国外优秀文档,喜欢总结、乐于分享,对Java应用容器、多线程编程以及分布式系统感兴趣。

程晓明,

  1号店资深架构师,从事1号店交易平台系统的开发,技术上关注并发与NIO。因5年前遇到的一个线上故障,解决过程中对Java并发编程产生了浓厚的兴趣,从此开始了漫长的探索之旅:从底层实现机制、内存模型到Java同步。纵观我自己对Java并发的学习过程,是一个从高层到底层再到高层的一个反复迭代的过程,我估计很多读者的学习过程应该与我类似。文章多见诸《IBM developerWorks》、InfoQ和《程序员》杂志。

目录

前 言

第1章 并发编程的挑战 1

1.1 上下文切换 1

1.1.1 多线程一定快吗 1

1.1.2 测试上下文切换次数和时长 3

1.1.3 如何减少上下文切换 3

1.1.4 减少上下文切换实战 4

1.2 死锁 5

1.3 资源限制的挑战 6

1.4 本章小结 7

第2章 Java并发机制的底层实现原理 8

2.1 volatile的应用 8

2.2 synchronized的实现原理与应用 11

2.2.1 Java对象头 12

2.2.2 锁的升级与对比 13

2.3 原子操作的实现原理 16

2.4 本章小结 20

第3章 Java内存模型 21

3.1 Java内存模型的基础 21

3.1.1 并发编程模型的两个关键问题 21

3.1.2 Java内存模型的抽象结构 22

3.1.3 从源代码到指令序列的重排序 23

3.1.4 并发编程模型的分类 24

3.1.5 happens-before简介 26

3.2 重排序 27

3.2.1 数据依赖性 28

3.2.2 as-if-serial语义 28

3.2.3 程序顺序规则 29

3.2.4 重排序对多线程的影响 29

3.3 顺序一致性 31

3.3.1 数据竞争与顺序一致性 31

3.3.2 顺序一致性内存模型 32

3.3.3 同步程序的顺序一致性效果 34

3.3.4 未同步程序的执行特性 35

3.4 volatile的内存语义 38

3.4.1 volatile的特性 38

3.4.2 volatile写-读建立的happens-before关系 39

3.4.3 volatile写-读的内存语义 40

3.4.4 volatile内存语义的实现 42

3.4.5 JSR-133为什么要增强volatile的内存语义 46

3.5 锁的内存语义 47

3.5.1 锁的释放-获取建立的

happens-before关系 47

3.5.2 锁的释放和获取的内存语义 48

3.5.3 锁内存语义的实现 50

3.5.4 concurrent包的实现 54

3.6 final域的内存语义 55

原文地址:https://www.cnblogs.com/bbb001/p/11370185.html

时间: 2024-10-11 23:10:50

Java并发编程的艺术下载 𦄭的相关文章

Java并发编程的艺术——互动出版网

这篇是计算机类的优质预售推荐>>>><Java并发编程的艺术> 阿里系和1号店资深技术专家撰写,Java并发编程领域的扛鼎之作,内容在InfoQ等社群得到高度认可,从JDK源码.JVM.CPU等多角度全面剖析与讲解Java并发编程的框架.原理和核心技术 编辑推荐 阿里系和1号店资深技术专家撰写,Java并发编程领域的扛鼎之作 内容在InfoQ等社群得到高度认可,从JDK源码.JVM.CPU等多角度全面剖析与讲解Java并发编程的框架.原理和核心技术 前言 为什么要写这本

读《Java并发编程的艺术》(一)

离开博客园很久了,自从找到工作,到现在基本没有再写过博客了.在大学培养起来的写博客的习惯在慢慢的消失殆尽,感觉汗颜.所以现在要开始重新培养起这个习惯,定期写博客不仅是对自己学习知识的一种沉淀,更是在督促自己要不断的学习,不断的进步. 最近在进一步学习Java并发编程,不言而喻,这部分内容是很重要的.现在就以<并发编程的艺术>一书为主导线,开始新一轮的学习. 进程和线程 进程是一个应用程序在处理机上的一次执行过程,线程是进程的最小基本单位(个人理解).一个进程可以包含多个线程. 上下文切换 我们

Java并发编程的艺术(六)——线程间的通信

多条线程之间有时需要数据交互,下面介绍五种线程间数据交互的方式,他们的使用场景各有不同. 1. volatile.synchronized关键字 PS:关于volatile的详细介绍请移步至:Java并发编程的艺术(三)--volatile 1.1 如何实现通信? 这两种方式都采用了同步机制实现多条线程间的数据通信.与其说是"通信",倒不如说是"共享变量"来的恰当.当一个共享变量被volatile修饰 或 被同步块包裹后,他们的读写操作都会直接操作共享内存,从而各个

《java并发编程的艺术》读书笔记-第三章Java内存模型(二)

一概述 本文属于<java并发编程的艺术>读书笔记系列,第三章java内存模型第二部分. 二final的内存语义 final在Java中是一个保留的关键字,可以声明成员变量.方法.类以及本地变量.可以参照之前整理的关键字final.这里作者主要介绍final域的内存语义. 对于final域,编译器和处理器要遵守两个重排序规则: 在构造函数内对一个final域的写入,与随后把这个被构造对象的引用赋值给一个引用变量,这两个操作之间不能重排序. 初次读一个包含final域的对象的引用,与随后初次读这

基于CAS线程安全的计算方法 java并发编程的艺术上的一个案例

package thread; import java.util.ArrayList; import java.util.List; import java.util.concurrent.atomic.AtomicInteger; /**  * @author  changxiangxiang  * @date 2014年8月6日 下午3:25:12  * @description  * @since  sprint2  */ public class Counter {     privat

&lt;java并发编程的艺术&gt;读书笔记-第三章java内存模型(一)

一概述 本文属于<java并发编程的艺术>读书笔记系列,继续第三章java内存模型. 二重排序 2.1数据依赖性 如果两个操作访问同一个变量,且这两个操作中有一个为写操作,此时这两个操作之间就存在数据依赖性.数据依赖分下列三种类型: 名称 代码示例 说明 写后读 a = 1;b = a; 写一个变量之后,再读这个位置. 写后写 a = 1;a = 2; 写一个变量之后,再写这个变量. 读后写 a = b;b = 1; 读一个变量之后,再写这个变量. 上面三种情况,只要重排序两个操作的执行顺序,

Java并发编程的艺术,解读并发编程的优缺点

并发编程的优缺点 使用并发的原因 多核的CPU的背景下,催生了并发编程的趋势,通过并发编程的形式可以将多核CPU的计算能力发挥到极致,性能得到提升. 在特殊的业务场景下先天的就适合于并发编程. 比如在图像处理领域,一张1024X768像素的图片,包含达到78万6千多个像素.即时将所有的像素遍历一边都需要很长的时间, 面对如此复杂的计算量就需要充分利用多核的计算的能力.又比如当我们在网上购物时,为了提升响应速度,需要拆分,减库存, 生成订单等等这些操作,就可以进行拆分利用多线程的技术完成. 面对复

《Java并发编程的艺术》之ConcurrentLinkedQueue

队列这个数据结构已经很熟悉了,就不多介绍,主要还是根据代码理解Doug Lea大师的一些其他技巧. 入队 如图所示,很多人可能会很疑惑,为什么第一次入队后,TAIL没有指向Node2?答案是为了效率!Σ(っ °Д °;)っ 那这还能叫队列吗?当然,它依然符合先进先出(FIFO)的规则.只是TAIL变量不一定指向尾结点,那么来看看大师是怎么做的. public boolean offer(E e) { checkNotNull(e); final Node<E> newNode = new No

那些年读过的书《Java并发编程的艺术》一、并发编程的挑战和并发机制的底层实现原理

一.并发编程的挑战 1.上下文切换 (1)上下文切换的问题 在处理器上提供了强大的并行性就使得程序的并发成为了可能.处理器通过给不同的线程分配不同的时间片以实现线程执行的自动调度和切换,实现了程序并行的假象. 在单线程中:线程保存串行的执行,线程间的上下文切换不会造成很大的性能开销. 而在多线程中:线程之间频繁的调度需要进行上下文切换以保存当前执行线程的上下文信息和加载将要执行线程的上下文信息,而上下文切换时需要底层处理器.操作系统.Java虚拟机提供支持的会消耗很多的性能开 销.如果频繁的进行