Acwing-204-表达整数的奇怪方式(扩展中国剩余定理)

链接:

https://www.acwing.com/problem/content/206/

题意:

给定2n个整数a1,a2,…,an和m1,m2,…,mn,求一个最小的非负整数x,满足?i∈[1,n],x≡mi(mod ai)。

思路:

扩展中国剩余定理模板题.

代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;

LL R[50], M[50];
int n;

LL ExGcd(LL a, LL b, LL &x, LL &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    LL d = ExGcd(b, a%b, x, y);
    LL tmp = y;
    y = x-(a/b)*y;
    x = tmp;
    return d;
}

LL ExCRT()
{
    LL m = M[1], r = R[1], x, y, gcd;
    for (int i = 2;i <= n;i++)
    {
        gcd = ExGcd(m, M[i], x, y);
        if ((r-R[i])%gcd != 0)
            return -1;
        x = (r-R[i])/gcd*x%M[i];
        r -= m*x;
        m = m/gcd*M[i];
        r %= m;
    }
    return (r%m+m)%m;
}

int main()
{
    scanf("%d", &n);
    for (int i = 1;i <= n;i++)
        scanf("%lld%lld", &M[i], &R[i]);
    printf("%lld\n", ExCRT());

    return 0;
}

原文地址:https://www.cnblogs.com/YDDDD/p/11576013.html

时间: 2024-10-08 22:06:00

Acwing-204-表达整数的奇怪方式(扩展中国剩余定理)的相关文章

欧几里得(辗转相除gcd)、扩欧(exgcd)、中国剩余定理(crt)、扩展中国剩余定理(excrt)简要介绍

1.欧几里得算法(辗转相除法) 直接上gcd和lcm代码. 1 int gcd(int x,int y){ 2 return y==0?x:gcd(y,x%y); 3 } 1 int lcm(int x,int y){ 2 return x*y/gcd(x,y); 3 } 2.扩欧:exgcd:对于a,b,一定存在整数对(x,y)使ax+by=gcd(a,b)=d ,且a,b互质时,d=1. x,y可递归地求得. 我懒得改返回值类型了 1 long long exgcd(long long a,

中国剩余定理(CRT) &amp; 扩展中国剩余定理(ExCRT)总结

中国剩余定理(CRT) & 扩展中国剩余定理(ExCRT)总结 标签:数学方法--数论 阅读体验:https://zybuluo.com/Junlier/note/1300035 前置浅讲 前置知识点:\(Exgcd\) 这两个东西都是用来解同余方程组的 形如 \[ \left\{ \begin{aligned} x\equiv B_1(mod\ W_1)\x\equiv B_2(mod\ W_2)\ \cdots\x\equiv B_n(mod\ W_n)\\end{aligned} \rig

LUOGU P4777 【模板】扩展中国剩余定理(EXCRT)

传送门 解题思路 扩展 $crt?$,就是中国剩余定理在模数不互质的情况下,首先对于方程 ?     $\begin{cases} x\equiv a_1\mod m_1\\x\equiv a_2\mod m_2\end{cases}$ 来说,可以将其写为: $\begin{cases} x=k_1*m_1+a_1\\x=k_2*m_2+a_2\end{cases}$ 然后联立方程: ?     $k_1*m_1+a_1=k_2*m_2+a_2$ $\Leftrightarrow -k_1*m_

扩展中国剩余定理(扩展CRT)详解

今天在$xsy$上翻题翻到了一道扩展$CRT$的题,就顺便重温了下 中国剩余定理是用于求一个最小的$x$,满足$x\equiv c_i \pmod{m_i}$. 正常的$CRT$有一个微小的要求,就是$\forall i,j (m_i,m_j)=1$. 在某些情况下,这个式子无法被满足,这个时候就要用扩展$CRT$来求解了. 我们先假设我们只有两条方程要被求解,它们分别是: $\begin{cases} x\equiv c_1 \pmod{m_1}\\x\equiv c_2 \pmod{m_2}

P4777 【模板】扩展中国剩余定理(EXCRT)

题目描述 给定 nnn组非负整数 ai,bia_i, b_iai?,bi?,求解关于 xxx的方程组{x≡b1 (mod a1)x≡b2 (mod a2)...x≡bn (mod an)\begin{cases} x \equiv b_1\ ({\rm mod}\ a_1) \\ x\equiv b_2\ ({\rm mod}\ a_2) \\ ... \\ x \equiv b_n\ ({\rm mod}\ a_n)\end{cases}??????????x≡b1? (mod a1?)x≡b

Luogu 4777 【模板】扩展中国剩余定理(EXCRT)

复习模板. 两两合并同余方程 $x\equiv C_{1} \ (Mod\ P_{1})$ $x\equiv C_{2} \ (Mod\ P_{2})$ 把它写成不定方程的形式: $x = C_{1} + P_{1} * y_{1}$ $x = C_{2} + P_{2} * y_{2}$ 发现上下两式都等于$x$ 所以$C_{1} + P_{1} * y_{1} = C_{2} + P_{2} * y_{2}$ 稍微移项一下,有$P_{1} * y_{1} + P_{2} * (-y_{2})

poj3708 扩展中国剩余定理+大数转d进制

#include<cstdio> #include<cstring> using namespace std; #define ll long long #define pf printf #define sf scanf const int maxn=1000+5; int d,in1[maxn],in2[maxn],inm[maxn],ink[maxn],a[maxn],b[maxn]; void tran(int *ten,int len,int &newlen,in

【文文殿下】扩展中国剩余定理(板子)

bool CRT(int a1,int m1,int a2,int m2,int &a,int &m) { int x,y; int d = exgcd(m1,m2,x,y); int z = a2-a1; if(z%d) return 0; x = (int)(1LL*x*(z/d)%(m2/d)); m=int(1LL*m1*m2/d); a = int((1LL*a1+1LL*x*m1%m+m)%m); return 1; } 原文地址:https://www.cnblogs.com

扩展中国剩余定理 乱写

有k个形式类似于x≡a[i](mod m[i])的方程组,求一个满足条件的最小x或判断无解,不保证m[i]之间互质. 那么我一开始有一个疑问,我为什么要学excrt,不就是模数不互质了吗... crt用到了exgcd来求 m[i]不互质,原来crt的 原文地址:https://www.cnblogs.com/yxsplayxs/p/11143651.html