卷积神经网络cnn的实现

卷积神经网络

代码:https://github.com/TimVerion/cat

卷积层

卷积层:通过在原始图像上平移来提取特征,每一个特征就是一个特征映射

原理:基于人脑的图片识别过程,我们可以认为图像的空间联系也是局部的像素联系比较紧密,而较远的像素相关性比较弱,所以每个神经元没有必要对全局图像进行感知,只要对局部进行感知,而在更高层次对局部的信息进行综合操作得出全局信息;即局部感知。

卷积分的知识

过程:

作用:

局部感知:在进行计算的时候,将图片划分为一个个的区域进行计算/考虑; 参数共享机制:假设每个神经元连接数据窗的权重是固定的 滑动窗口重叠:降低窗口与窗口之间的边缘不平滑的特性。

不同的过滤器产生不同的效果:

真实做了什么?

一步有一步的浓缩,产生更加靠谱更加准确的特征

一张图片卷积后高和宽如何变化?

# 卷积函数def conv_fun(cache):    x, w, b = cache["a"], cache["w"], cache["b"]    pad, stride = cache["pad"], cache["stride"]    N, C, H, W = x.shape    F, C, HH, WW = w.shape    # numpy提供的可以填充0的api,constant代表用一样的值填充前两维不填,后两维各自填充pad行    x_padded = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), mode=‘constant‘)    H_new = int((H + 2 * pad - HH) / stride) + 1    W_new = int((W + 2 * pad - WW) / stride) + 1    s = stride    out = np.zeros((N, F, H_new, W_new))    for i in range(N):  # ith image        for f in range(F):  # fth filter            for j in range(H_new):                for k in range(W_new):                    out[i, f, j, k] = np.sum                    (x_padded[i, :, j * s:(HH + j * s), k * s:(WW + k * s)] * w[f]) +b[f]    return out

池化层

池化层:通过特征后稀疏参数来减少学习的参数,降低网络的复杂度,(最大池化和平均池化)

# 前向池化def max_pool_forward(cache):    x, HH, WW, s = cache["net"], cache["HH"], cache["WW"], cache["s"]    N, C, H, W = x.shape    H_new = 1 + int((H - HH) / s)    W_new = 1 + int((W - WW) / s)    out = np.zeros((N, C, H_new, W_new))    for i in range(N):        for j in range(C):            for k in range(H_new):                for l in range(W_new):                    # 定位到某个窗口                    window = x[i, j, k * s:HH + k * s, l * s:WW + l * s]                    # 找到该窗口的最大值,然后赋值                    out[i, j, k, l] = np.max(window)    return out

ReLU层

http://playground.tensorflow.org/

作用:增加网络非线性的分割能力

# Relu函数def Relu(x):    return np.maximum(0, x)

全连接层

# 全连接def fc(net, w, b):    N = net.shape[0]    # 把每个像素提取出来    x_row = net.reshape(N, -1)    out = np.dot(x_row, w) + b    return out

CNN反向传播的不同之处

首先要注意的是,一般神经网络中每一层输入输出a,z都只是一个向量,而CNN中的a,z是一个三维张量,即由若干个输入的子矩阵组成。其次:

  1. 池化层没有激活函数。这个问题倒比较好解决,我们可以令池化层的激活函数为σ(z)=z,即激活后就是自己本身。这样池化层激活函数的导数为1。
  2. 池化层在前向传播的时候,对输入进行了压缩,那么我们向前反向推导上一层的误差时,需要做upsample处理
  3. 卷积层是通过张量卷积,或者说若干个矩阵卷积求和而得到当前层的输出,这和一般的网络直接进行矩阵乘法得到当前层的输出不同。这样在卷积层反向传播的时候,上一层误差的递推计算方法肯定有所不同。
  4. 对于卷积层,由于W使用的运算是卷积,那么由该层误差推导出该层的所有卷积核的W,b的方式也不同。

池化层的反向传播

这时候假如前向的时候是最大化池化:

这时候要用到前向传播的时候最大值位置进行还原:

如果是平均:

卷积层的反向传播

吴恩达笔记中的推导:

卷积神经网络中的反向传播(可选/非梯度)

在现代深度学习框架中,你只需要执行正向传递,这个框架负责向后传递,所以大多数深度学习工程师不会这样做

需要麻烦的细节向后传递。卷积的向后传递网络是复杂的。但是,如果您愿意,您可以完成这个可选部分

来了解卷积网络中的backprop是什么样子的。

在之前的课程中,你实现了一个简单的(完全连接的)神经网络,使用反向传播来计算关于更新成本的导数

参数。类似地,在卷积神经网络中你可以计算为了更新参数对代价求导。backprop方程不是平常那样的,我们在课堂上没有推导出来,但是我们简单地介绍了一下:

Convolutional layer backward pass

让我们从实现CONV层的向后传递开始。

  1. 计算dA:

这是计算dA对于一定的过滤器Wc的代价的公式以及一个给定的训练例子:

其中Wc是一个过滤器,dZhw是上一层传递过来的梯度,每次我们都将相同的过滤器Wc乘以不同的dZ更新的。我们这样做主要是因为当计算正向传播时,每个过滤器都是由不同的a_slice点乘求和。因此,当计算dA的反向传播的时候,我们也是把所有a_slice的梯度相加。

在代码中,在合适的for循环中,这个公式可以转化为:

da_prev_pad[vert_start:vert_end, horiz_start:horiz_end, :] +=,W[:,:,:,c] * dZ[i, h, w, c]
  1. 计算dW: 这是计算dWc (dWc是一个过滤器的导数)关于损失的公式:

    其中aslice是原样本的一个窗口。因此,这就得到了W关于这个窗口的梯度。这是相同的W,我们将所有这些梯度相加得到dW。

    在代码中,在合适的for循环中,这个公式可以转化为:

    dW[:,:,:,c] += a_slice * dZ[i, h, w, c]
  2. 计算db: 这是计算db对于一个过滤器Wc的代价的公式:

    正如您之前在基本神经网络中看到的,db是通过求和dZ来计算的。在本例中只需对conv输出(Z)的所有梯度求和。

    在代码中,在合适的for循环中,这个公式可以转化为:

    db[:,:,:,c] += dZ[i, h, w, c]

真实代码:

def conv_backward(dout, cache):
    x, w, b = cache["a"], cache["w"], cache["b"]
    pad, stride = cache["pad"], cache["stride"]
    F, C, HH, WW = w.shape
    N, C, H, W = x.shape
    H_new = 1 + int((H + 2 * pad - HH) / stride)
    W_new = 1 + int((W + 2 * pad - WW) / stride)
?
    dx = np.zeros_like(x)
    dw = np.zeros_like(w)
    db = np.zeros_like(b)
?
    s = stride
    x_padded = np.pad(x, ((0, 0), (0, 0), (pad, pad), (pad, pad)), ‘constant‘)
    dx_padded = np.pad(dx, ((0, 0), (0, 0), (pad, pad), (pad, pad)), ‘constant‘)
?
    for i in range(N):  # ith image
        for f in range(F):  # fth filter
            for j in range(H_new):
                for k in range(W_new):
                    window = x_padded[i, :, j * s:HH + j * s, k * s:WW + k * s]
                    # db = dout //  dw=dout*x // dx = dout*w
                    db[f] += dout[i, f, j, k]
                    dw[f] += window * dout[i, f, j, k]
                    dx_padded[i, :, j * s:HH + j * s, k * s:WW + k * s]
                    += w[f] * dout[i, f, j, k]

原文地址:https://www.cnblogs.com/TimVerion/p/11396882.html

时间: 2024-08-08 09:24:51

卷积神经网络cnn的实现的相关文章

深度学习之卷积神经网络CNN及tensorflow代码实现示例

一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的手写数字图片,输入神经元就有28×28×3=2352 个-- .这很容易看出使用全连接神经网络处理图像中的需要训

卷积神经网络(CNN)的简单实现(MNIST)

卷积神经网络(CNN)的基础介绍见http://blog.csdn.net/fengbingchun/article/details/50529500,这里主要以代码实现为主. CNN是一个多层的神经网络,每层由多个二维平面组成,而每个平面由多个独立神经元组成. 以MNIST作为数据库,仿照LeNet-5和tiny-cnn( http://blog.csdn.net/fengbingchun/article/details/50573841 ) 设计一个简单的7层CNN结构如下: 输入层Inpu

卷积神经网络(CNN)学习笔记1:基础入门

卷积神经网络(CNN)学习笔记1:基础入门 Posted on 2016-03-01   |   In Machine Learning  |   9 Comments  |   14935  Views 概述 卷积神经网络(Convolutional Neural Network, CNN)是深度学习技术中极具代表的网络结构之一,在图像处理领域取得了很大的成功,在国际标准的ImageNet数据集上,许多成功的模型都是基于CNN的.CNN相较于传统的图像处理算法的优点之一在于,避免了对图像复杂的

卷积神经网络CNN总结

从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图中就多了许多传统神经网络没有的层次. 卷积神经网络的层级结构      ? 数据输入层/ Input layer ? 卷积计算层/ CONV layer ? ReLU激励层 / ReLU layer ? 池化层 / Pooling layer ? 全连接层 / FC layer 1.数据输入层该层要

卷积神经网络(CNN)模型结构

卷积神经网络(CNN)模型结构 转载:http://www.cnblogs.com/pinard/p/6483207.html 看到的一片不错的文章,先转过来留着,怕以后博主删了.哈哈哈 在前面我们讲述了DNN的模型与前向反向传播算法.而在DNN大类中,卷积神经网络(Convolutional Neural Networks,以下简称CNN)是最为成功的DNN特例之一.CNN广泛的应用于图像识别,当然现在也应用于NLP等其他领域,本文我们就对CNN的模型结构做一个总结. 在学习CNN前,推荐大家

《神经网络与深度学习》(五) 卷积神经网络CNN及tensorflow代码实现示例

转自:http://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的

深度学习(一) 卷积神经网络CNN

Contents 图像数据集基础 全连接神经网络解决图片问题的弊端(前世) 卷积神经网络的今生 网络结构 卷积操作 池化操作 小结 图像数据集基础 数字图像划分为彩色图像.灰度图像.二值图像和索引图像几种.其中,像素是构成图像的基本单位,例如一张28×28像素的图片,即表示横向有28个像素点,纵向有28个像素点. 最常用的彩色图像和灰度图像: 彩色图像:每个像素由RGB三个分量来表示,即红绿蓝.每个分量介于(0,255).那么,对于一个28×28的彩色图像,便可以由三个表示RGB颜色分量的28×

人工智能之卷积神经网络(CNN)

前言:人工智能机器学习有关算法内容,请参见公众号“科技优化生活”之前相关文章.人工智能之机器学习主要有三大类:1)分类;2)回归;3)聚类.今天我们重点探讨一下卷积神经网络(CNN)算法. ^_^ 20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络CNN(Convolutional Neural Networks). 1980年,K.Fukushima提出的新识别机是卷积神经网络

卷积神经网络CNN

本文学习笔记的部分内容參考zouxy09的博客,谢谢!http://blog.csdn.net/zouxy09/article/details/8775360 什么是卷积 卷积假设改名为"加权平均积",就会非常好理解了.卷积的离散形式就是经常使用的加权平均.而连续形式则可理解为对连续函数的加权平均.假如我们观測或计算出一组数据.但数据因为受噪音的污染并不光滑.我们希望对其进行人工处理. 那么.最简单的方法就是加权平均.实际上加权平均是两个序列在做离散卷积,当中一个序列是权重,还有一个序

卷积神经网络CNN在自然语言处理中的应用

卷积神经网络(Convolution Neural Network, CNN)在数字图像处理领域取得了巨大的成功,从而掀起了深度学习在自然语言处理领域(Natural Language Processing, NLP)的狂潮.2015年以来,有关深度学习在NLP领域的论文层出不穷.尽管其中必定有很多附庸风雅的水文,但是也存在很多经典的应用型文章.笔者在2016年也发表过一篇关于CNN在文本分类方面的论文,今天写这篇博客的目的,是希望能对CNN的结构做一个比较清晰的阐述,同时就目前的研究现状做一个