机器学习算法实现解析——word2vec源码解析

在阅读本文之前,建议首先阅读“简单易学的机器学习算法——word2vec的算法原理”,掌握如下的几个概念:

  • 什么是统计语言模型
  • 神经概率语言模型的网络结构
  • CBOW模型和Skip-gram模型的网络结构
  • Hierarchical Softmax和Negative Sampling的训练方法
  • Hierarchical Softmax与Huffman树的关系

有了如上的一些概念,接下来就可以去读word2vec的源码。在源码的解析过程中,对于基础知识部分只会做简单的介绍,而不会做太多的推导,原理部分会给出相应的参考地址。



在wrod2vec工具中,有如下的几个比较重要的概念:

  • CBOW
  • Skip-Gram
  • Hierarchical Softmax
  • Negative Sampling

其中CBOW和Skip-Gram是word2vec工具中使用到的两种不同的语言模型,而Hierarchical Softmax和Negative Sampling是对以上的两种模型的具体的优化方法。

在word2vec工具中,主要的工作包括:

  • 预处理。即变量的声明,全局变量的定义等;
  • 构建词库。即包含文本的处理,以及是否需要有指定词库等;
  • 初始化网络结构。即包含CBOW模型和Skip-Gram模型的参数初始化,Huffman编码的生成等;
  • 多线程模型训练。即利用Hierarchical Softmax或者Negative Sampling方法对网络中的参数进行求解;
  • 最终结果的处理。即是否保存和以何种形式保存。

对于以上的过程,可以由下图表示:

在接下来的内容中,将针对以上的五个部分,详细分析下在源代码中的实现技巧,以及简单介绍我在读代码的过程中对部分代码的一些思考。

1、预处理

在预处理部分,对word2vec需要使用的参数进行初始化,在word2vec中是利用传入的方式对参数进行初始化的。

在预处理部分,实现了sigmoid函数值的近似计算。在利用神经网络模型对样本进行预测的过程中,需要对其进行预测,此时,需要使用到sigmoid函数,sigmoid函数的具体形式为:

σ(x)=11+e?x=ex1+ex

如果每一次都请求计算sigmoid值,对性能将会有一定的影响,当sigmoid的值对精度的要求并不是非常严格时,可以采用近似计算。在word2vec中,将区间[?6,6](设置的参数MAX_EXP为6)等距离划分成EXP_TABLE_SIZE等份,并将每个区间中的sigmoid值计算好存入到数组expTable中,需要使用时,直接从数组中查找。计算sigmoid值的代码如下所示:

expTable = (real *)malloc((EXP_TABLE_SIZE + 1) * sizeof(real));// 申请EXP_TABLE_SIZE+1个空间

        // 计算sigmoid值
        for (i = 0; i < EXP_TABLE_SIZE; i++) {
                expTable[i] = exp((i / (real)EXP_TABLE_SIZE * 2 - 1) * MAX_EXP); // Precompute the exp() table
                expTable[i] = expTable[i] / (expTable[i] + 1);                   // Precompute f(x) = x / (x + 1)
        }

注意:在上述代码中,作者使用的是小于EXP_TABLE_SIZE,实际的区间是[?6,6)。

2、构建词库

在word2vec源码中,提供了两种构建词库的方法,分别为:

  • 指定词库:ReadVocab()方法
  • 从词的文本构建词库:LearnVocabFromTrainFile()方法

2.1、构建词库的过程

在这里,我们以从词的文本构建词库为例。构建词库的过程如下所示:

在这部分中,最主要的工作是对文本进行处理,包括低频词的处理,hash表的处理等等。首先,会在词库中增加一个“< /s>”的词,同时,在读取文本的过程中,将换行符“\n”也表示成该该词,如:

if (ch == ‘\n‘) {
    strcpy(word, (char *)"</s>");// 换行符用</s>表示
    return;

在循环的过程中,不断去读取文件中的每一个词,并在词库中进行查找,若存在该词,则该词的词频+1,否则,在词库中增加该词。在词库中,是通过哈希表的形式存储的。最终,会过滤掉一些低频词。

在得到最终的词库之前,还需根据词库中的词频对词库中的词进行排序。

2.2、对词的哈希处理

在存储词的过程中,同时保留这两个数组:

  • 存储词的vocab
  • 存储词的hash的vocab_hash

其中,在vocab中,存储的是词对应的结构体:

// 词的结构体
struct vocab_word {
        long long cn; // 出现的次数
        int *point; // 从根结点到叶子节点的路径
        char *word, *code, codelen;// 分别对应着词,Huffman编码,编码长度
};

在vocab_hash中存储的是词在词库中的Index。

在对词的处理过程中,主要包括:

  • 计算词的hash值:
// 取词的hash值
int GetWordHash(char *word) {
        unsigned long long a, hash = 0;
        for (a = 0; a < strlen(word); a++) hash = hash * 257 + word[a];
        hash = hash % vocab_hash_size;
        return hash;
}
  • 检索词是否存在。如不存在则返回-1,否则,返回该词在词库中的索引:
while (1) {
    if (vocab_hash[hash] == -1) return -1;// 不存在该词
    if (!strcmp(word, vocab[vocab_hash[hash]].word)) return vocab_hash[hash];// 返回索引值
    hash = (hash + 1) % vocab_hash_size;// 处理冲突
}
return -1;// 不存在该词

在这个过程中,使用到了线性探测的开放定址法处理冲突,开放定址法就是一旦发生冲突,就去寻找下一个空的散列地址。

  • 不存在,则插入新词。

在这个过程中,除了需要将词增加到词库中,好需要计算该词的hash值,并将vocab_hash数组中的值标记为索引。

2.3、对低频词的处理

在循环读取每一个词的过程中,当出现“vocab_size > vocab_hash_size * 0.7”时,需要对低频词进行处理。其中,vocab_size表示的是目前词库中词的个数,vocab_hash_size表示的是初始设定的hash表的大小。

在处理低频词的过程中,通过参数“min_reduce”来控制,若词出现的次数小于等于该值时,则从词库中删除该词。

在删除了低频词后,需要重新对词库中的词进行hash值的计算。

2.4、根据词频对词库中的词排序

基于以上的过程,程序已经将词从文件中提取出来,并存入到指定的词库中(vocab数组),接下来,需要根据每一个词的词频对词库中的词按照词频从大到小排序,其基本过程在函数SortVocab中,排序过程为:

qsort(&vocab[1], vocab_size - 1, sizeof(struct vocab_word), VocabCompare);

保持字符“< \s>”在最开始的位置。排序后,根据“min_count”对低频词进行处理,与上述一样,再对剩下的词重新计算hash值。

至此,整个对词的处理过程就已经结束了。加下来,将是对网络结构的处理和词向量的训练。

3、初始化网络结构

有了以上的对词的处理,就已经处理好了所有的训练样本,此时,便可以开始网络结构的初始化和接下来的网络训练。网络的初始化的过程在InitNet()函数中完成。

3.1、初始化网络参数

在初始化的过程中,主要的参数包括词向量的初始化和映射层到输出层的权重的初始化,如下图所示:

在初始化的过程中,映射层到输出层的权重都初始化为0,而对于每一个词向量的初始化,作者的初始化方法如下代码所示:

for (a = 0; a < vocab_size; a++) for (b = 0; b < layer1_size; b++) {
    next_random = next_random * (unsigned long long)25214903917 + 11;
    // 1、与:相当于将数控制在一定范围内
    // 2、0xFFFF:65536
    // 3、/65536:[0,1]之间
    syn0[a * layer1_size + b] = (((next_random & 0xFFFF) / (real)65536) - 0.5) / layer1_size;// 初始化词向量
}

首先,生成一个很大的next_random的数,通过与“0xFFFF”进行与运算截断,再除以65536得到[0,1]之间的数,最终,得到的初始化的向量的范围为:[?0.5m,0.5m],其中,m为词向量的长度。

3.2、Huffman树的构建

在层次Softmax中需要使用到Huffman树以及Huffman编码,因此,在网络结构的初始化过程中,也需要初始化Huffman树。在生成Huffman树的过程中,首先定义了3个长度为vocab_size*2+1的数组:

long long *count = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
long long *binary = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));
long long *parent_node = (long long *)calloc(vocab_size * 2 + 1, sizeof(long long));

其中,count数组中前vocab_size存储的是每一个词的对应的词频,后面初始化的是很大的数,已知词库中的词是按照降序排列的,因此,构建Huffman树的过程如下所示(对于Huffman树的原理,可以参见博文“数据结构和算法——Huffman树和Huffman编码”):

首先,设置两个指针pos1和pos2,分别指向最后一个词和最后一个词的后一位,从两个指针所指的数中选择出最小的值,记为min1i,如pos1所指的值最小,此时,将pos1左移,再比较pos1和pos2所指的数,选择出最小的值,记为min2i,将他们的和存储到pos2所指的位置。并将此时pos2所指的位置设置为min1i和min2i的父节点,同时,记min2i所指的位置的编码为1,如下代码所示:

// 设置父节点
parent_node[min1i] = vocab_size + a;
parent_node[min2i] = vocab_size + a;
binary[min2i] = 1;// 设置一个子树的编码为1

构建好Huffman树后,此时,需要根据构建好的Huffman树生成对应节点的Huffman编码。假设,上述的数据生成的最终的Huffman树为:

此时,count数组,binary数组和parent_node数组分别为:

在生成Huffman编码的过程中,针对每一个词(词都在叶子节点上),从叶子节点开始,将编码存入到code数组中,如对于上图中的“R”节点来说,其code数组为{1,0},再对其反转便是Huffman编码:

vocab[a].codelen = i;// 词的编码长度
vocab[a].point[0] = vocab_size - 2;
for (b = 0; b < i; b++) {
    vocab[a].code[i - b - 1] = code[b];// 编码的反转
    vocab[a].point[i - b] = point[b] - vocab_size;// 记录的是从根结点到叶子节点的路径
}

注意:这里的Huffman树的构建和Huffman编码的生成过程写得比较精简。

3.3、负样本选中表的初始化

如果是采用负采样的方法,此时还需要初始化每个词被选中的概率。在所有的词构成的词典中,每一个词出现的频率有高有低,我们希望,对于那些高频的词,被选中成为负样本的概率要大点,同时,对于那些出现频率比较低的词,我们希望其被选中成为负样本的频率低点。这个原理于“轮盘赌”的策略一致(详细可以参见“优化算法——遗传算法”)。在程序中,实现这部分功能的代码为:

// 生成负采样的概率表
void InitUnigramTable() {
        int a, i;
        double train_words_pow = 0;
        double d1, power = 0.75;
        table = (int *)malloc(table_size * sizeof(int));// int --> int
        for (a = 0; a < vocab_size; a++) train_words_pow += pow(vocab[a].cn, power);
        // 类似轮盘赌生成每个词的概率
        i = 0;
        d1 = pow(vocab[i].cn, power) / train_words_pow;
        for (a = 0; a < table_size; a++) {
                table[a] = i;
                if (a / (double)table_size > d1) {
                        i++;
                        d1 += pow(vocab[i].cn, power) / train_words_pow;
                }
                if (i >= vocab_size) i = vocab_size - 1;
        }
}

在实现的过程中,没有直接使用每一个词的频率,而是使用了词的0.75次方。

4、多线程模型训练

以上的各个部分是为训练词向量做准备,即准备训练数据,构建训练模型。在上述的初始化完成后,接下来就是根据不同的方法对模型进行训练,在实现的过程中,作者使用了多线程的方法对其进行训练。

4.1、多线程的处理

为了能够对文本进行加速训练,在实现的过程中,作者使用了多线程的方法,并对每一个线程上分配指定大小的文件:

// 利用多线程对训练文件划分,每个线程训练一部分的数据
fseek(fi, file_size / (long long)num_threads * (long long)id, SEEK_SET);

注意:这边的多线程分割方式并不能保证每一个线程分到的文件是互斥的。对于其中的原因,可以参见“Linux C 编程——多线程”。

这个过程可以通过下图简单的描述:

在实现多线程的过程中,作者并没有加锁的操作,而是对模型参数和词向量的修改可以任意执行,这一点类似于基于随机梯度的方法,训练的过程与训练样本的训练是没有关系的,这样可以大大加快对词向量的训练。抛开多线程的部分,在每一个线程内执行的是对模型和词向量的训练。

作者在实现的过程中,主要实现了两个模型,即CBOW模型和Skip-gram模型,在每个模型中,又分别使用到了两种不同的训练方法,即层次Softmax和Negative Sampling方法。

对于CBOW模型和Skip-gram模型的理解,首先必须知道统计语言模型(Statistic Language Model)

在统计语言模型中的核心内容是:计算一组词语能够成为一个句子的概率。

为了能够求解其中的参数,一大批参数求解的方法被提出,在其中,就有word2vec中要使用的神经概率语言模型。具体的神经概率语言模型可以参见“”。

4.2、CBOW模型

CBOW模型和Skip-gram模型是神经概率语言模型的两种变形形式,其中,在CBOW模型中包含三层,即输入层,映射层和输出层。对于CBOW模型,如下图所示:

在CBOW模型中,通过词wt的前后词wt?2,wt?1,wt+1和wt+2来预测当前词wt。此处的窗口的大小window为2。

4.3.1、从输入层到映射层

首先找到每个词对应的词向量,并将这些词的词向量相加,程序代码如下所示:

// in -> hidden
// 输入层到映射层
cw = 0;
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
    c = sentence_position - window + a;// sentence_position表示的是当前的位置
    // 判断c是否越界
    if (c < 0) continue;
    if (c >= sentence_length) continue;

    last_word = sen[c];// 找到c对应的索引
    if (last_word == -1) continue;

    for (c = 0; c < layer1_size; c++) neu1[c] += syn0[c + last_word * layer1_size];// 累加
    cw++;
}

当累加完窗口内的所有的词向量的之后,存储在映射层neu1中,并取平均,程序代码如下所示:

for (c = 0; c < layer1_size; c++) neu1[c] /= cw;// 计算均值

当取得了映射层的结果后,此时就需要使用Hierarchical Softmax或者Negative Sampling对模型进行训练。

4.3.2、Hierarchical Softmax

Hierarchical Softmax是word2vec中用于提高性能的一项关键的技术。由Hierarchical Softmax的原理可知,对于词w,其对数似然函数为:

L(w)=∑j∈point{(1?dwj)?log[σ(XTwθwj)]+dwj?log[1?σ(XTwθwj)]}

其中,j表示的词w对应的Huffman编码中的每一个编码的下标,dwj表示的是第j个Huffman编码,且dwj∈{0,1},这是一个求和的过程,因此,对于Huffman编码中的每一个编码,上述的对数似然函数为:

L(w,j)=(1?dwj)?log[σ(XTwθwj)]+dwj?log[1?σ(XTwθwj)]

在此,变量为Xw和θwj,此时,分别对Xw和θwj求偏导数:

?L(w,j)?θwj=[1?dwj?σ(XTwθwj)]Xw

?L(w,j)?Xw=[1?dwj?σ(XTwθwj)]θwj

因此,对于θwj的更新公式为:

θwj=θwj+η[1?dwj?σ(XTwθwj)]Xw

在word2vec源码中,为了能够加快计算,作者在开始的时候存储了一份Sigmoid的值,因此,对于σ(XTwθwj)需要从expTable中查询到对应的值。

for (d = 0; d < vocab[word].codelen; d++) {// word为当前词
    // 计算输出层的输出
    f = 0;
    l2 = vocab[word].point[d] * layer1_size;// 找到第d个词对应的权重
    // Propagate hidden -> output
    for (c = 0; c < layer1_size; c++) f += neu1[c] * syn1[c + l2];// 映射层到输出层

    if (f <= -MAX_EXP) continue;
    else if (f >= MAX_EXP) continue;
    else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];// Sigmoid结果

    // ‘g‘ is the gradient multiplied by the learning rate
    g = (1 - vocab[word].code[d] - f) * alpha;
    // Propagate errors output -> hidden
    for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];// 修改映射后的结果
    // Learn weights hidden -> output
    for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * neu1[c];// 修改映射层到输出层之间的权重
}

对于窗口内的词的向量的更新,则是利用窗口内的所有词的梯度之和∑?L(w,j)?Xw来更新,如程序代码所示:

// hidden -> in
// 以上是从映射层到输出层的修改,现在返回修改每一个词向量
for (a = b; a < window * 2 + 1 - b; a++) if (a != window) {
    c = sentence_position - window + a;
    if (c < 0) continue;
    if (c >= sentence_length) continue;
    last_word = sen[c];
    if (last_word == -1) continue;
    // 利用窗口内的所有词向量的梯度之和来更新
    for (c = 0; c < layer1_size; c++) syn0[c + last_word * layer1_size] += neu1e[c];
}

4.3.3、Negative Sampling

与Hierarchical Softmax一致,Negative Sampling也是一种加速计算的方法,在Negative Sampling方法中使用的是随机的负采样,在CBOW模型中,已知词w的上下文,需要预测词w,对于给定的上下文,词w即为正样本,其他的样本为负样本,此时我们需要根据词频从剩下的词中挑选出最合适的负样本,实现的代码如下所示:

// 标记target和label
if (d == 0) {// 正样本
    target = word;
    label = 1;
} else {// 选择出负样本
    next_random = next_random * (unsigned long long)25214903917 + 11;
    target = table[(next_random >> 16) % table_size];// 从table表中选择出负样本
    // 重新选择
    if (target == 0) target = next_random % (vocab_size - 1) + 1;
    if (target == word) continue;
    label = 0;
}

当选择出了正负样本,此时的损失函数为:

l(w)=σ(XTwθw)?∏u∈NEG(w)[1?σ(XTwθu)]

其对数似然函数为:

L=logl(w)=log∏u∈w∪NEG(w){[σ(XTwθu)]Lw(u)?[1?σ(XTwθu)]1?Lw(u)}

即为:

∑u∈w∪NEG(w){Lw(u)?log[σ(XTwθu)]+[1?Lw(u)]?log[1?σ(XTwθu)]}

取:

L(w,u)=Lw(u)?log[σ(XTwθu)]+[1?Lw(u)]?log[1?σ(XTwθu)]

在此,变量为Xw和θu,此时,分别对Xw和θwj求偏导数:

?L(w,u)?θu=[Lw(u)?σ(XTwθu)]Xw

?L(w,u)?Xw=[Lw(u)?σ(XTwθu)]θu

因此,更新的代码为:

if (f > MAX_EXP) g = (label - 1) * alpha;
else if (f < -MAX_EXP) g = (label - 0) * alpha;
else g = (label - expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))]) * alpha;

for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1neg[c + l2];
for (c = 0; c < layer1_size; c++) syn1neg[c + l2] += g * neu1[c];

对词向量的更新与Hierarchical Softmax中一致。

4.3、Skip-gram模型

而Skip-gram模型与CBOW正好相反,在Skip-gram模型中,则是通过当前词wt来预测其前后词wt?2,wt?1,wt+1和wt+2,Skip-gram模型如下图所示:

4.3.1、Hierarchical Softmax

由上述的分析,我们发现,在Skip-gram模型中,其计算方法与CBOW模型很相似,不同的是,在Skip-gram模型中,需要使用当前词分别预测窗口中的词,因此,这是一个循环的过程:

for (a = b; a < window * 2 + 1 - b; a++) if (a != window)

对于向量的更新过程与CBOW模型中的Hierarchical Softmax一致:

c = sentence_position - window + a;
if (c < 0) continue;
if (c >= sentence_length) continue;
last_word = sen[c];
if (last_word == -1) continue;
l1 = last_word * layer1_size;
for (c = 0; c < layer1_size; c++) neu1e[c] = 0;
// HIERARCHICAL SOFTMAX
if (hs) for (d = 0; d < vocab[word].codelen; d++) {
    f = 0;
    l2 = vocab[word].point[d] * layer1_size;
    // Propagate hidden -> output
    // 映射层即为输入层
    for (c = 0; c < layer1_size; c++) f += syn0[c + l1] * syn1[c + l2];

    if (f <= -MAX_EXP) continue;
    else if (f >= MAX_EXP) continue;
    else f = expTable[(int)((f + MAX_EXP) * (EXP_TABLE_SIZE / MAX_EXP / 2))];

    // ‘g‘ is the gradient multiplied by the learning rate
    g = (1 - vocab[word].code[d] - f) * alpha;
    // Propagate errors output -> hidden
    for (c = 0; c < layer1_size; c++) neu1e[c] += g * syn1[c + l2];
    // Learn weights hidden -> output
    for (c = 0; c < layer1_size; c++) syn1[c + l2] += g * syn0[c + l1];
}
// Learn weights input -> hidden
for (c = 0; c < layer1_size; c++) syn0[c + l1] += neu1e[c];

4.3.2、Negative Sampling

与上述一致,在Skip-gram中与CBOW中的唯一不同是在Skip-gram中是循环的过程。代码的实现类似与上面的Hierarchical Softmax。

参考文献

时间: 2024-10-12 08:34:02

机器学习算法实现解析——word2vec源码解析的相关文章

Spring IoC源码解析——Bean的创建和初始化

Spring介绍 Spring(http://spring.io/)是一个轻量级的Java 开发框架,同时也是轻量级的IoC和AOP的容器框架,主要是针对JavaBean的生命周期进行管理的轻量级容器,可以单独使用,也可以和Struts框架,MyBatis框架等组合使用. IoC介绍 IoC是什么 Ioc-Inversion of Control,即"控制反转",不是什么技术,而是一种设计思想.在Java开发中,Ioc意味着将你设计好的对象交给容器控制,而不是传统的在你的对象内部直接控

Android 开源项目源码解析(第二期)

Android 开源项目源码解析(第二期) 阅读目录 android-Ultra-Pull-To-Refresh 源码解析 DynamicLoadApk 源码解析 NineOldAnimations 源码解析 SlidingMenu 源码解析 Cling 源码解析 BaseAdapterHelper 源码分析 Side Menu.Android 源码解析 DiscreteSeekBar 源码解析 CalendarListView 源码解析 PagerSlidingTabStrip 源码解析 公共

Spring源码解析和配置文件加载

Spring类的继承结构图: Spring运用了大量的模板方法模式和策略模式,所以各位看源码的时候,务必留意,每一个继承的层次都有不同的作用,然后将相同的地方抽取出来,依赖抽象将不同的处理按照不同的策略去处理. 步骤A. 读取 Resource 文件形成 Document 模型  类图: XmlBeanFactory -> XmlBeanDefinitionReader Spring 使用 XmlBeanDefinitionReader 来读取并解析 xml 文件,XmlBeanDefiniti

LinledList源码解析

LinkedList源码解析 LinkedList源码解析 简介 结构 内部类讲解 属性expectedModCount属性的讲解 主要方法讲解 --简介 LinkedList底层是使用双线链表来实现的,将数组添加到这个集合或者是从集合删除其实都是对双向链表增加节点和删除及节点的操作. LinkedList实现的类AbstractSequentialList中定义的modCount属性使得继承自它的集合不能够异步的进行合集的增加删除等等操作,即操作是线程不安全的. --结构 LinkedList

【特征匹配】RANSAC算法原理与源码解析

转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/50217655 随机抽样一致性(RANSAC)算法,可以在一组包含"外点"的数据集中,采用不断迭代的方法,寻找最优参数模型,不符合最优模型的点,被定义为"外点".在图像配准以及拼接上得到广泛的应用,本文将对RANSAC算法在OpenCV中角点误匹配对的检测中进行解析. 1.RANSAC原理 OpenCV中滤除误匹配对采用RANSAC算法寻找一个最佳

Spark 源码解析:TaskScheduler的任务提交和task最佳位置算法

上篇文章< Spark 源码解析 : DAGScheduler中的DAG划分与提交 >介绍了DAGScheduler的Stage划分算法. 本文继续分析Stage被封装成TaskSet,并将TaskSet提交到集群的Executor执行的过程 在DAGScheduler的submitStage方法中,将Stage划分完成,生成拓扑结构,当一个stage没有父stage时候,会调用DAGScheduler的submitMissingTasks方法来提交该stage包含tasks. 首先来分析一下

ChrisRenke/DrawerArrowDrawable源码解析

转载请注明出处http://blog.csdn.net/crazy__chen/article/details/46334843 源码下载地址http://download.csdn.net/detail/kangaroo835127729/8765757 这次解析的控件DrawerArrowDrawable是一款侧拉抽屉效果的控件,在很多应用上我们都可以看到(例如知乎),控件的github地址为https://github.com/ChrisRenke/DrawerArrowDrawable

【转】Java 集合系列12之 TreeMap详细介绍(源码解析)和使用示例

概要 这一章,我们对TreeMap进行学习.我们先对TreeMap有个整体认识,然后再学习它的源码,最后再通过实例来学会使用TreeMap.内容包括:第1部分 TreeMap介绍第2部分 TreeMap数据结构第3部分 TreeMap源码解析(基于JDK1.6.0_45)第4部分 TreeMap遍历方式第5部分 TreeMap示例 转载请注明出处:http://www.cnblogs.com/skywang12345/admin/EditPosts.aspx?postid=3310928 第1部

【转】Java HashMap 源码解析(好文章)

- .fluid-width-video-wrapper { width: 100%; position: relative; padding: 0; } .fluid-width-video-wrapper iframe, .fluid-width-video-wrapper object, .fluid-width-video-wrapper embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; } [