poj1947(树形dp)

题目链接:http://poj.org/problem?id=1947

题意:给n(n<=150)个点的一棵树,求删掉最少边数k使得最后该树只剩下p(1<=p<=n)个节点。(求最小的k)

分析:设dp[u][j]表示以u节点为根的子树保留j个节点删掉最少的边数;则dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v][k]).初始值dp[u][1]=0.

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 250
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct edge
{
    int next,v;
    edge(){}
    edge(int v,int next):v(v),next(next){}
}e[N*2];
int head[N],tot,n,m;
int dp[N][N];
void addedge(int u,int v)
{
    e[tot]=edge(v,head[u]);
    head[u]=tot++;
}
void dfs(int u,int fa)
{
    dp[u][1]=0;
    for(int i=head[u];~i;i=e[i].next)
    {
        int v=e[i].v;
        if(v==fa)continue;
        dfs(v,u);
        for(int j=m;j>=1;j--)
        {
            dp[u][j]++;//对于子树u,要保持j个节点不变,必须砍掉该条边去掉子树v
            for(int k=1;k<j;k++)
                dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v][k]);
        }
    }
}
int main()
{
    int u,v;
    while(scanf("%d%d",&n,&m)>0)
    {
        tot=0;
        memset(head,-1,sizeof(head));
        memset(dp,0x3f,sizeof(dp));
        for(int i=1;i<n;i++)
        {
            scanf("%d%d",&u,&v);
            addedge(u,v);
            addedge(v,u);
        }
       dfs(1,-1);
       int ans=dp[1][m];
       for(int i=2;i<=n;i++)ans=min(ans,dp[i][m]+1);
       printf("%d\n",ans);
    }
}

时间: 2024-10-30 01:56:09

poj1947(树形dp)的相关文章

【POJ1947】Rebuilding Roads,树形DP(本文分组背包做法)

题意:给出一颗n个节点的树,要求割去一些边,使得到的树中存在m个节点的树,问最少割断多少条边. 题解: 树形DP无疑!然后就是怎么做了. 首先我们可以想到将节点分配给各子树,做一次dfs,但是做过树形DP的oiers们都知道,因为分配方式近乎于全排列,所以必死,剪枝都剪不活! 好吧,然后就有了左儿子右兄弟的优化,即重新建树,把第一个儿子归为左子节点,然后剩下的儿子都依次往该儿子的右子树上扔,不赘述了,可以自己查,因为本文并不是这种做法(动规神马的太恶心,代码复杂度太大!) 我在这里介绍一下分组背

树形 DP 总结

本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在"树"的数据结构上的动态规划,平时作的动态规划都是线性的或者是建立在图上的,线性的动态规划有二种方向既向前和向后,相应的线性的动态规划有二种方法既顺推与逆推,而树型动态规划是建立在树上的,所以也相应的有二个方向: 1.叶->根:在回溯的时候从叶子节点往上更新信息 2.根 - >叶:往往是在从叶往根d

HDU-2196 Computer (树形DP)

最近在看树形DP,这题应该是树形DP的经典题了,写完以后还是有点感觉的.之后看了discuss可以用树分治来做,以后再试一试. 题目大意 找到带权树上离每个点的最远点.︿( ̄︶ ̄)︿ 题解: 对于每一个点的最远点,就是以这个点为根到所有叶子节点的最长距离.但是如果确定根的话,除了根节点外,只能找到每个节点(度数-1)个子树的最大值,剩下一个子树是该节点当前的父亲节点. 所以当前节点的最远点在当前节点子树的所有叶子节点以及父亲节点的最远点上(当父亲节点的最远点不在当前节点的子树上时), 如果父亲节

UVA-01220 Party at Hali-Bula (树形DP+map)

题目链接:https://vjudge.net/problem/UVA-1220 思路: 树形DP模板题,求最大人数很简单,难点在于如何判断最大人数的名单是否有不同的情况: 解决方法是用一个数组f[manx][2]记录该节点是否出场的情况,为真时代表有多种情况; 具体讨论: 当父节点的值加上某个子节点的值时,他的f的情况也和该子节点一样: 当某个节点dp(i, 0) == dp(i, 1), 则该节点以及它的父节点也一定有多种情况(父节点必定取其中之一). Code: 1 #include<bi

HDU 1520 树形dp裸题

1.HDU 1520  Anniversary party 2.总结:第一道树形dp,有点纠结 题意:公司聚会,员工与直接上司不能同时来,求最大权值和 #include<iostream> #include<cstring> #include<cmath> #include<queue> #include<algorithm> #include<cstdio> #define max(a,b) a>b?a:b using nam

HDU2196 Computer(树形DP)

和LightOJ1257一样,之前我用了树分治写了.其实原来这题是道经典的树形DP,感觉这个DP不简单.. dp[0][u]表示以u为根的子树中的结点与u的最远距离 dp[1][u]表示以u为根的子树中的结点与u的次远距离 这两个可以一遍dfs通过儿子结点转移得到.显然dp[0][u]就是u的一个可能的答案,即u往下走的最远距离,还缺一部分就是u往上走的最远距离: dp[2][u]表示u往上走的最远距离 对于这个的转移,分两种情况,是这样的: dp[2][v] = max( dp[0][u]+w

hdu5593--ZYB&#39;s Tree(树形dp)

问题描述 ZYB有一颗N个节点的树,现在他希望你对于每一个点,求出离每个点距离不超过KK的点的个数. 两个点(x,y)在树上的距离定义为两个点树上最短路径经过的边数, 为了节约读入和输出的时间,我们采用如下方式进行读入输出: 读入:读入两个数A,B,令fai??为节点i的父亲,fa?1??=0;fa?i??=(A∗i+B)%(i−1)+1,i∈[2,N] . 输出:输出时只需输出N个点的答案的xor和即可. 输入描述 第一行一个整数TT表示数据组数. 接下来每组数据: 一行四个正整数N,K,A,

CF 219D Choosing Capital for Treeland 树形DP 好题

一个国家,有n座城市,编号为1~n,有n-1条有向边 如果不考虑边的有向性,这n个城市刚好构成一棵树 现在国王要在这n个城市中选择一个作为首都 要求:从首都可以到达这个国家的任何一个城市(边是有向的) 所以一个城市作为首都,可能会有若干边需要改变方向 现在问,选择哪些城市作为首都,需要改变方向的边最少. 输出最少需要改变方向的边数 输出可以作为首都的编号 树形DP 先假定城市1作为首都 令tree(i)表示以i为根的子树 dp[i]表示在tree(i)中,若以i为首都的话,需要改变的边数 第一次

HDU 1011 Starship Troopers(树形dp+背包)

Starship Troopers Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 13109    Accepted Submission(s): 3562 Problem Description You, the leader of Starship Troopers, are sent to destroy a base of