Pat(Advanced Level)Practice--1018(Public Bike Management)

Pat1018代码

题目描述:

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust
the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

Figure 1

Figure 1 illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes
stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:

1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3,
so that both stations will be in perfect conditions.

2. PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (<= 100), always an even number, is the maximum capacity of each station; N (<= 500), the total number of stations; Sp,
the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci(i=1,...N) where each Ci is
the current number of bikes at Si respectively. Then M lines follow, each contains 3 numbers: Si, Sj, and Tij which describe
the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0->S1->...->Sp. Finally after another
space, output the number of bikes that we must take back to PBMC after the condition of Sp is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge‘s data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0

AC代码:题目的意思是找路径最短的线路,如果相等则找带来自行车最少的线路,如果再相等则找带走自行车最少的线路;思路,Dijkstra+DFS,本来以为一遍Dijkstra就可以解决的,写到一半时发现,不到目的地根本没法选择路径;因为在选择最短路径的同时,还要使需要的自行车数目最少,以及剩余的自行车数目最少,用DSF就可以搞定;

#include<cstdio>
#include<stack>
#include<algorithm>
#define MAX 505
#define INF 0x0FFFFFFF

using namespace std;

int map[MAX][MAX];
int Station[MAX];
int visited[MAX],Length[MAX];
int FinalPath[MAX],TempPath[MAX];//Path
int flag[MAX][MAX];//DFS flag
int c,n,s,m;
int takein=INF,takeout=INF;//takein to a station,takeout from a station
int finished;//finish flag
int shortdis;//the shortest distance from PBMC to station s
int nowstep,finalstep;

void Init(int n)
{
	int i,j;
	for(i=0;i<=n;i++)
	{
		Length[i]=INF;
		for(j=0;j<=n;j++)
			map[i][j]=INF;
	}
}

void Dijkstra(int n,int d)//计算最短路径
{
	int min=INF;
	int i,j,k;
	int num;
	for(i=0;i<=n;i++)
	{
		Length[i]=map[0][i];
		visited[i]=0;
	}
	Length[0]=0;
	visited[0]=1;
	for(i=1;i<=n;i++)
	{
		min=INF;
		for(j=0;j<=n;j++)
		{
			if(!visited[j]&&Length[j]<min)
			{
				min=Length[j];
				k=j;
			}
		}
		visited[k]=1;
		for(j=0;j<=n;j++)
		{
			if(!visited[j]&&Length[j]>min+map[k][j])
			{
				Length[j]=min+map[k][j];
			}
		}
	}
	shortdis=Length[d];
}

void Compute()//计算从PBMC到该站需要带来和带走多少辆自行车
{
	int in=INF,out=INF;
	int i;
	int sum=0;
	for(i=1;i<=nowstep;i++)
	{
		sum+=Station[TempPath[i]]-c/2;
		if(sum<in)//in表示的是从PBMC到该站的路径时要达到最佳状态需要带来
			in=sum;           //的自行车数目
	}
	if(in>0)//不需要带来自行车
		in=0;
	else
		in=-in;
	out=sum+in;//需要带出自行车
	if(in<takein||(in==takein&&out<takeout))
	{
		takein=in;
		takeout=out;
		if(takein==0&&takeout==0)
			finished=1;
		finalstep=nowstep;
		for(i=1;i<=nowstep;i++)//拷贝路径
			FinalPath[i]=TempPath[i];
	}
}

void DFS(int step,int start,int len)
{
	int j;
	if(finished==1||len>Length[start])
		return;
	if(len==shortdis&&start==s)
	{
		nowstep=step;
		Compute();
	}
	for(j=1;j<=n;j++)
	{
		if(flag[start][j]==1||map[j][start]==INF)
			continue;
		flag[start][j]=flag[j][start]=1;
		TempPath[step+1]=j;
		DFS(step+1,j,len+map[start][j]);
		flag[start][j]=flag[j][start]=0;
	}
}

void Display()
{
	int i;
	printf("%d 0",takein);
	for(i=1;i<=finalstep;i++)
		printf("->%d",FinalPath[i]);
	printf(" %d\n",takeout);
}

int main(int argc,char *argv[])
{
	int i;
	scanf("%d%d%d%d",&c,&n,&s,&m);
	Init(n);
	for(i=1;i<=n;i++)
		scanf("%d",&Station[i]);
	for(i=0;i<m;i++)
	{
		int x,y,len;
		scanf("%d%d%d",&x,&y,&len);
		map[x][y]=len;
		map[y][x]=len;
	}
	Dijkstra(n,s);
	DFS(0,0,0);
	Display();
	return 0;
}

Pat(Advanced Level)Practice--1018(Public Bike Management)

时间: 2024-10-05 18:19:56

Pat(Advanced Level)Practice--1018(Public Bike Management)的相关文章

pat 1018 Public Bike Management

题意有三:1.时间最短 2.送出车辆最少 3.回收车辆最少 陷阱有一:调整路径上站点的车辆数目时,不能把后面站点多出来的车辆返补回前面车辆数不够的站点.乍看之下这是符合逻辑的,因为在前面的站点的时候不能知道后面的站点是什么情况,所以按理应该逐个调整合理,后面的站点影响不到前面的调整.但是细想之后发现这其实是很死板的做法,现实当中设计这样一个管理系统肯定能够实时收集每个站点的自行车数,所以在出发前应该就能得出这条路径上总的自行车数目,继而就能得到最优的送出数.但四十是介样子素通不过滴. #incl

PAT 甲级 1018 Public Bike Management (30 分)(dijstra+dfs case 7 过不了求助!!!)

1018 Public Bike Management (30 分)   There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Pub

PTA (Advanced Level)1018 Public Bike Management

Public Bike Management There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Manag

1018. Public Bike Management (30)

比较复杂的dfs 注意算好到底需要send多少take back多少 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at an

1018 Public Bike Management (30)(30 分)

时间限制400 ms 内存限制65536 kB 代码长度限制16000 B There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Pu

1018 Public Bike Management (30分)

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city. The Public Bike Management Center (PBMC) kee

PAT (Advanced Level) 1018 Public Bike Management

题解 看完这题,直接来一套最短路.这次WA了,淦. 因为这道题路径的选择条件为:第一标尺是距离短优先,第二标尺是从管理中心带出去的自行车少的优先,第三标尺是从站点带回去的自行车少的优先. 只用最短路算法解决这道题的话,第二标尺和第三标尺不能被正确维护,因为最短路算法的特点,会出现改变其他站点的自行车数量,但是这个站点并不在你的最终路径上的情况. 所以正确解法是先利用最短路算法将距离最短的路径(可能不止一条)保存下来,再利用深搜对这些在距离上最优的路径进行第二标尺和第三标尺的筛选,求得最优解. 错

PAT (Advanced Level) 1018. Public Bike Management (30)

先找出可能在最短路上的边,图变成了一个DAG,然后在新图上DFS求答案就可以了. #include<iostream> #include<cstring> #include<cmath> #include<algorithm> #include<cstdio> #include<queue> #include<vector> using namespace std; const int INF=0x7FFFFFFF; co

1018 Public Bike Management (30 分)(图的遍历and最短路径)

这题不能直接在Dijkstra中写这个第一 标尺和第二标尺的要求 因为这是需要完整路径以后才能计算的  所以写完后可以在遍历 #include<bits/stdc++.h> using namespace std; int cmax,n,v,m; const int N=1e3; int weight[N]; int mp[N][N]; const int inf=0x3f3f3f3f; int dis[N]; int vis[N]; vector<int>path[N]; voi

1002 A+B for Polynomials (PAT (Advanced Level) Practice)

This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N?1?? a?N?1???? N?2?? a?N?2?