树的几种遍历

树的几种遍历,码迷,mamicode.com

时间: 2024-10-17 11:51:53

树的几种遍历的相关文章

算法学习 - 树的三种遍历(递归实现)先序遍历,中序遍历,后序遍历

树的遍历 这三种遍历方法其实都很简单的,举例来说: a / b c 这个是例子下面讲下这三个是如何遍历的. struct TreeNode; typedef TreeNode* Node; typedef int EleType; struct TreeNode{ Node lchild; Node rchild; EleType data; }; 先序遍历 先序遍历,就是从上到下,从左到右,遇到一个就遍历,上面这个例子遍历的序列就是:a b c 递归代码如下: void PreOrderTre

树的高度,深度,层数和三种遍历方式

树的高度: 当只有一个根节点的时候,高度就是0. //计算树的高度int depth(Node node){ if(node == NULL) return -1; int l = depth(node->left); int r = depth(node->right); return (l < r)?(r+1):(l+1);//当只有一个根节点的时候,高度就是-1+1=0} 层数: 树的高度最底下的为第1层(有的书定义为第0层),依次向上累加 树的深度: 完全二叉树是指这样的二叉树:

Java中树和树的几种常规遍历方法

其中包含有先序遍历.中序遍历.后序遍历以及广度优先遍历四种遍历树的方法: 1 package com.ietree.basic.datastructure.tree.binarytree; 2 3 import java.util.ArrayDeque; 4 import java.util.ArrayList; 5 import java.util.List; 6 import java.util.Queue; 7 8 /** 9 * Created by ietree 10 * 2017/5

树的三种DFS策略(前序、中序、后序)遍历

之前刷leetcode的时候,知道求排列组合都需要深度优先搜索(DFS), 那么前序.中序.后序遍历是什么鬼,一直傻傻的分不清楚.直到后来才知道,原来它们只是DFS的三种不同策略. N = Node(节点) L = Left(左节点) R = Right(右节点) 在深度优先搜索的时候,以Node的访问顺序,定义了三种不同的搜索策略: 前序遍历:结点 -> 左子树 -> 右子树 中序遍历:左子树-> 结点 -> 右子树 后序遍历:左子树 -> 右子树 -> 结点 ##前

二叉树的创建和四种遍历(前序、先序、后序、层次、结点的层数、深度、叶子数等)—java描述

二叉树的创建和四种遍历(前序.先序.后序.层次.结点的层数.深度.叶子数等)—java描述 package javab; //树的结点类 public class TreeNode { String data; TreeNode leftChild,rightChild,next; public TreeNode(String data){ this.data=data; } public TreeNode(String data,TreeNode left,TreeNode right){ l

二叉树总结—建树和4种遍历方式(递归&amp;&amp;非递归)

今天总结一下二叉树,要考离散了,求不挂!二叉树最重要的就是 建立.4种遍历方式,简单应用,如何判断两颗二叉树是否相似 二叉树分为 :1.完全二叉树  2.满二叉树 结构性质: 1).满二叉树 高度为h ,节点数则为 2^h - 1,且叶子节点全在最下层,且叶子节点数为2^(n-1)个{n代表二叉树层数,也叫深度} 2).n个节点的 完全二叉树 深度为 int(log2n)(以2为底n的对数)+ 1: 3).非空二叉树 叶子节点个数==双分支节点数+1 4).非空二叉树 某节点编号 n  若有左孩

关于二叉树的几种遍历方法

转载请注明出处 http://blog.csdn.net/pony_maggie/article/details/38390513 作者:小马 一 二叉树的一些概念 二叉树就是每个结点最多有两个子树的树形存储结构.先上图,方便后面分析. 1 满二叉树和完全二叉树 上图就是典型的二叉树,其中左边的图还叫做满二叉树,右边是完全二叉树.然后我们可以得出结论,满二叉树一定是完全二叉树,但是反过来就不一定.满二叉树的定义是除了叶子结点,其它结点左右孩子都有,深度为k的满二叉树,结点数就是2的k次方减1.完

重温数据结构:二叉树的常见方法及三种遍历方式 Java 实现

读完本文你将了解到: 什么是二叉树 Binary Tree 两种特殊的二叉树 满二叉树 完全二叉树 满二叉树 和 完全二叉树 的对比图 二叉树的实现 用 递归节点实现法左右链表示法 表示一个二叉树节点 用 数组下标表示法 表示一个节点 二叉树的主要方法 二叉树的创建 二叉树的添加元素 二叉树的删除元素 二叉树的清空 获得二叉树的高度 获得二叉树的节点数 获得某个节点的父亲节点 二叉树的遍历 先序遍历 中序遍历 后序遍历 遍历小结 总结 树的分类有很多种,但基本都是 二叉树 的衍生,今天来学习下二

关于二叉树三种遍历的相互推导

嗯..跟着陈越姥姥上数据结构,期末考试遇到一道从后序遍历和中序遍历推前序遍历的题,然后硬是不会做,今天突然有了思路,遂记下来: 原题是这样的:一颗二叉树的后序遍历序列是FDEBGCA,中序遍历序列是FDBEACG,那么前序遍历序列是? 思路如下: 根据后序遍历的性质,最后访问的元素一定是根节点,可知该二叉树根节点为A: 根据中序遍历的性质,出现在A前面的一定是A的左子树里面的节点,出现在A后面的一定是A右子树里面的节点.那么我们现在可以确定FDBE一定是A的左子树,CG一定是A的右子树: 根据树