使用Python操作Elasticsearch数据索引的教程
这篇文章主要介绍了使用Python操作Elasticsearch数据索引的教程,Elasticsearch处理数据索引非常高效,要的朋友可以参考下
Elasticsearch是一个分布式、Restful的搜索及分析服务器,Apache Solr一样,它也是基于Lucence的索引服务器,但我认为Elasticsearch对比Solr的优点在于:
- 轻量级:安装启动方便,下载文件之后一条命令就可以启动;
- Schema free:可以向服务器提交任意结构的JSON对象,Solr中使用schema.xml指定了索引结构;
- 多索引文件支持:使用不同的index参数就能创建另一个索引文件,Solr中需要另行配置;
- 分布式:Solr Cloud的配置比较复杂。
环境搭建
启动Elasticsearch,访问端口在9200,通过浏览器可以查看到返回的JSON数据,Elasticsearch提交和返回的数据格式都是JSON.
1 |
|
安装官方提供的Python API,在OS X上安装后出现一些Python运行错误,是因为setuptools版本太旧引起的,删除重装后恢复正常。
1 |
|
索引操作
对于单条索引,可以调用create或index方法。
1 2 3 4 5 |
|
Elasticsearch批量索引的命令是bulk,目前Python API的文档示例较少,花了不少时间阅读源代码才弄清楚批量索引的提交格式。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
|
在这里发现Python API序列化JSON时对数据类型支撑比较有限,原始数据使用的NumPy.Int32必须转换为int才能索引。此外,现在的bulk操作默认是每次提交500条数据,我修改为5000甚至50000进行测试,会有索引不成功的情况。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
对于索引的批量删除和更新操作,对应的文档格式如下,更新文档中的doc节点是必须的。
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|
常见错误
- SerializationError:JSON数据序列化出错,通常是因为不支持某个节点值的数据类型
- RequestError:提交数据格式不正确
- ConflictError:索引ID冲突
- TransportError:连接无法建立
性能
上面是使用MongoDB和Elasticsearch存储相同数据的对比,虽然服务器和操作方式都不完全相同,但可以看出数据库对批量写入还是比索引服务器更具备优势。
Elasticsearch的索引文件是自动分块,达到千万级数据对写入速度也没有影响。但在达到磁盘空间上限时,Elasticsearch出现了文件合并错误,并且大量丢失数据(共丢了100多万条),停止客户端写入后,服务器也无法自动恢复,必须手动停止。在生产环境中这点比较致命,尤其是使用非Java客户端,似乎无法在客户端获取到服务端的Java异常,这使得程序员必须很小心地处理服务端的返回信息。