几句话总结一个算法之CTR预估模型

背景

假设现在有个商品点击预测的任务,有用户端特征性别、年龄、消费力等,商品侧特征价格、销量等,样本为0或者1,现在对特征进行one hot encode,如性别特征用二维表示,男为[1,0],女为[0,1],其他特征相同处理后拼接起来一共有n维,n是所有特征的类别数之和。

Logistic Regression(LR)与二阶

线性模型,y = sigmoid(w, x),w有n维,优点是简单易解释,缺点是太简单,无法挖掘特征组合的情况,如男性+游戏类商品可能是个很强特征。为了弥补这个缺点往往需要人工特征组合,如 手工组合特征 f = 性别是否男 & 商品是否为游戏类,这很依赖人工经验。于是就有了暴力的方法,枚举所有的两两特征的组合(线性二阶多项式),训练参数最大有 n * n个,但是性别男和性别女(相同性别field内)是无法组合的,真实值没这么大。假设与n个特征,m个field,相同field 内部无法组合,则训练参数为0.5 * (n * n - (n/m * n/m) * m )

FM(Factorization Machines)

上面的LR线性二阶多项式参数空间是一个 n * n 的矩阵,过于庞大,可以用两个矩阵相乘得到,这两个矩阵的的维度是 n * k 和 k * n,那么参数空间就是 2 * n * k,k是人为设置的参数,大小可以调节,如果k远远小于n,则参数数量将极大变小,更进一步,这两个矩阵可以用一个矩阵和它的转置来表示。

从embedding角度看,假设k为2,”男性和游戏类目“分别可以在这个矩阵中找到一个2维的向量表示,这两个向量的内积就表示了组合特征对预测结果的影响。

LR的二阶特征组合参数是独立的,如”男性&游戏类目“只看这个特征对最终结果的影响,注重记忆功能;而FM里面,男性这个特征的embedding受到的是来自于各个特征组合的影响,并不独立,注重泛化功能,效果上并不一定比LR二阶更好,但是参数空间是实实在在减少了,另外,FM要求特征embedding后的size一样大小,淘宝百万店铺,十个年龄层级性别,明显不太合适这种方法。

FFM(Field-aware Factorization Machines)

FFM是考虑领域知识的一种FM变种,上面介绍FM,男性这个特征的embedding受到的是来自于各个特征组合的影响,能不能降低这个影响?答案是考虑领域知识。假设有m个field,则男性对每个field都建立一个embedding,参数个数是 n * k *m,这是个鉴于二阶LR和FM之间的一个方法,”男性&游戏类目“ 中的男性这向量,还是受到其他类目组合的影响,但是不受到”男性&价格“这类特征组合的影响。

Embedding + MLP(Multilayer Perceptron)

底层所有特征都做embedding,连接起来,上面再堆叠多层全连接层,这里没有底层特征的组合,但是在可以在高阶组合,学习难度更大。与FM的优势在于,各个特征embedding的长度可以不用保持一致,这样的设置更为合理。

FNN

通过FM预训练embedding,上面再堆叠多层全连接层,是一种特殊的embedding + MLP。

DeepFM

embedding + MLP的方式没有考虑底层(低阶)特征的组合,DeepFM把FM的组合特征引入到 MLP充当”wide部分“,同时MLP也使用了FM的embedding表示联合训练。

NFM(Neural Factorization Machines)

FM是把两个向量做内积,即先把对应位置的元素相乘,后直接相加求和当做组合特征。NFM让两个特征的向量元素相乘,但是不急于直接求和组成特征,而是把所有组合特征元素在各自对应的位置累加起来,做当MLP的输入,个人感觉这种操作底层特征的信息丢失很大。

AFM(Attention Factorization Machine)

所有组合特征元素在各自对应的位置累加起来,AFM在NFM的基础上加入attention子网络,不再是平均求和,而是加权求和。

PNN(Product-based Neural Network)

DeepFM把FM的组合特征引入到 MLP充当”wide部分“,PNN直接FM的组合特征的内积或外积当做deep部分输入,但是这样又会导致product层的节点数至少是输入Field数的平方级别,为了降低节点数,采用外积后的sum pooling降低复杂度,又回到NFM的路子。

DCN(Deep&Cross Network)

采用了残差网络的思想,在高阶进行特征组合,下一个隐藏 = 上一个隐层的转置 * 该层参数w * 第一个隐层 + 上一个隐层+偏置项,其中w是要学习的参数,上一个隐层的转置 * w 实际上就是个标量了。

原文地址:https://www.cnblogs.com/daniel-D/p/11847778.html

时间: 2024-10-08 20:37:34

几句话总结一个算法之CTR预估模型的相关文章

几句话总结一个算法之Q-Learning与Sarsa

与Policy Gradients的不同之处在于,这两个算法评估某个状态s执行某个动作a的期望奖励,即Q(s,a) Q(s,a) 有两种方法计算方法,第一种直接查表或者模型预估,Q(s, a) = checkTable(s, a),这个在训练初期是非常不准确的:第二种方法是通过一步蒙特卡洛方法获取,假设执行a后状态是s',且s'执行了动作了a',Q’(s, a) = 当前状态奖励 + 衰减系数 * Q(s',a'),近似于一个动态规划问题,当游戏结束,就只有当前状态奖励.但与动态规划不同的是,这

几句话总结一个算法之RNN、LSTM和GRU

RNN 一般神经网络隐层的计算是h=g(w * x),其中g是激活函数,相比于一般神经网络,RNN需要考虑之前序列的信息,因此它的隐藏h的计算除了当前输入还要考虑上一个状态的隐藏,h=g(w*x+w'*h'),其中h'是上一次计算的隐层,可见信息传递是通过隐层完成的. LSTM 有上面普通RNN可以知道,每个状态下的RNN输入实际有两个,上一个隐藏h'以及当前输入x.RNN有个问题是对序列中的各个状态都是等同对待的,如果某个状态很重要,是无法长期影响后面的输出的.LSTM为了解决这个问题提出了类

闲聊DNN CTR预估模型

原文:http://www.52cs.org/?p=1046 闲聊DNN CTR预估模型 Written by b manongb 作者:Kintocai, 北京大学硕士, 现就职于腾讯. 伦敦大学张伟楠博士在携程深度学习Meetup[1]上分享了Talk<Deep Learning over Multi-field Categorical Data – A Case Study on User Response Prediction in Display Ads>.他在2016 ECIR发表

【转】- 从FM推演各深度CTR预估模型(附代码)

从FM推演各深度CTR预估模型(附代码) 2018年07月13日 15:04:34 阅读数:584 作者: 龙心尘 && 寒小阳 时间:2018年7月 出处: 龙心尘 寒小阳 原文地址:https://www.cnblogs.com/suanec/p/9328336.html

CTR预估---传统模型

传统CTR预估模型包括:LR.FM.GBDT等,其优点是:可解释性强.训练和部署方便.便于在线学习. (一)CTR预估 1.在cost-per-click:CPC广告中广告主按点击付费.为了最大化平台收入和用户体验,广告平台必须预测广告的CTR,称作predict CTR:pCTR.对每个用户的每次搜索query,有多个满足条件的广告同时参与竞争.只有pCTR x bid price最大的广告才能竞争获胜,从而最大化eCPM:eCPM=pCTR x bid 基于最大似然准则可以通过广告的历史表现

为什么CTR预估使用AUC来评估模型?

ctr预估简单的解释就是预测用户的点击item的概率.为什么一个回归的问题需要使用分类的方法来评估,这真是一个好问题,尝试从下面几个关键问题去回答. 1.ctr预估是特殊的回归问题 ctr预估的目标函数为 f(x)=P(+1|x) 特殊之处在于目标函数的值域为[0,1],而且由于是条件概率,具有如下特性 如果将ctr预估按照一般的回归问题处理(如使用Linear Regression),面临的问题是一般的linear regression的值域范围是实数域,对于整个实数域的敏感程度是相同的,所以

每一个程序员都应当了解的11句话

每一个程序员都应当了解的11句话,你最同意哪一句? 1. 技术只是解决问题的选择,而不是解决问题的根本 我们可以因为掌握了最新的 JavaScript 框架 ahem.Angular 的 IoC 容器技术或者某些编程语言甚至操作系统而欢欣雀跃,但是这些东西并不是作为程序员的我们用来解决问题的根本——它们只是用于帮助我们解决问题的简单工具. 我们必须非常谨慎,不要对某项正好喜欢或者正好很火的特定技术走火入魔.否则,我们将进入这样的思维怪圈:把掌握的那项技术比做是锤子,在思考问题时,会自然的把所有的

使用yii的layout,加入&lt;?php echo $content; ?&gt;这句话时,它会自动在子页面上面添加一个div包裹

使用yii的layout,加入<?php echo $content; ?>这句话时,它会自动在子页面上面添加一个div包裹,而且div的id命名为id=content,这个和已有id重复,如何解决? http://hi.baidu.com/jyhscy/item/2b05034c9d9f1e35fb8960d1 yii中layout的column和main文件之间的关系 在yii创建应用成果之后,在view/layouts/目录下,会产生3个布局页面: -->main.php --&g

用七年时间造出的阿里云,如今三句话告诉你是什么

马云在2016年10月杭州云栖大会的主题演讲中只字未提"阿里云",但这并不说明阿里云不重要,而是在某种意义上说明在马云的心里,阿里云"从0到1"的阶段已经完成了. 在10月13日杭州云栖大会开幕当天,马云发表了就上一财年致股东信,信中提及阿里云承载了中国35%的网站并为之提供云计算和大数据的服务,而截至2016年3月31日的阿里财报显示阿里云拥有超过230万用户,其中云计算付费用户达50万. 从2009年2月写下阿里云的第一段代码开始,阿里云上上下下的负责人们就一直