动态规划——01背包

转 https://www.cnblogs.com/Christal-R/p/Dynamic_programming.html

问题描述:有n 个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

三、动态规划的原理及过程:

  eg:number=4,capacity=8


i


1


2


3


4


w(体积)


2


3


4


5


v(价值)


3


4


5


6

      定义V(i,j):当前背包容量 j,前 i 个物品最佳组合对应的价值;

   寻找递推关系式,面对当前商品有两种可能性:

    第一,包的容量比该商品体积小,装不下,此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);

    第二,还有足够的容量可以装该商品,但装了也不一定达到当前最优价值,所以在装与不装之间选择最优的一个,即V(i,j)=max{ V(i-1,j),V(i-1,j-w(i))+v(i) }

       其中V(i-1,j)表示不装,V(i-1,j-w(i))+v(i) 表示装了第i个商品,背包容量减少w(i)但价值增加了v(i);

    由此可以得出递推关系式:

    1) j<w(i)      V(i,j)=V(i-1,j)

    2) j>=w(i)     V(i,j)=max{ V(i-1,j)V(i-1,j-w(i))+v(i) 

  填表,首先初始化边界条件,V(0,j)=V(i,0)=0;

  h) 然后一行一行的填表,

    1) 如,i=1,j=1,w(1)=2,v(1)=3,有j<w(1),故V(1,1)=V(1-1,1)=0;

    2) 又如i=1,j=2,w(1)=2,v(1)=3,有j=w(1),故V(1,2)=max{ V(1-1,2),V(1-1,2-w(1))+v(1) }=max{0,0+3}=3;

    3) 如此下去,填到最后一个,i=4,j=8,w(4)=5,v(4)=6,有j>w(4),故V(4,8)=max{ V(4-1,8),V(4-1,8-w(4))+v(4) }=max{9,4+6}=10;所以填完表如下图:

void FindMax()//动态规划
{
    int i,j;
    //填表
    for(i=1;i<=number;i++)
    {
        for(j=1;j<=capacity;j++)
        {
            if(j<w[i])//包装不进
            {
                V[i][j]=V[i-1][j];
            }
            else//能装
            {
                if(V[i-1][j]>V[i-1][j-w[i]]+v[i])//不装价值大
                {
                    V[i][j]=V[i-1][j];
                }
                else//前i-1个物品的最优解与第i个物品的价值之和更大
                {
                    V[i][j]=V[i-1][j-w[i]]+v[i];
                }
            }
        }
    }
}

  i) 表格填完,最优解即是V(number,capacity)=V(4,8)=10,但还不知道解由哪些商品组成,故要根据最优解回溯找出解的组成,根据填表的原理可以有如下的寻解方式:

    1) V(i,j)=V(i-1,j)时,说明没有选择第i 个商品,则回到V(i-1,j);

    2) V(i,j)=V(i-1,j-w(i))+v(i)实时,说明装了第i个商品,该商品是最优解组成的一部分,随后我们得回到装该商品之前,即回到V(i-1,j-w(i));

    3) 一直遍历到i=0结束为止,所有解的组成都会找到。

  j) 如上例子,

    1) 最优解为V(4,8)=10,而V(4,8)!=V(3,8)却有V(4,8)=V(3,8-w(4))+v(4)=V(3,3)+6=4+6=10,所以第4件商品被选中,并且回到V(3,8-w(4))=V(3,3);

    2) 有V(3,3)=V(2,3)=4,所以第3件商品没被选择,回到V(2,3);

    3) 而V(2,3)!=V(1,3)却有V(2,3)=V(1,3-w(2))+v(2)=V(1,0)+4=0+4=4,所以第2件商品被选中,并且回到V(1,3-w(2))=V(1,0);

    4) 有V(1,0)=V(0,0)=0,所以第1件商品没被选择;

  k) 到此,01背包问题已经解决,利用动态规划解决此问题的效率即是填写此张表的效率,所以动态规划的时间效率为O(number*capacity)=O(n*c),由于用到二维数组存储子问题的解,所以动态规划的空间效率为O(n*c);

void FindWhat(int i,int j)//寻找解的组成方式
{
    if(i>=0)
    {
        if(V[i][j]==V[i-1][j])//相等说明没装
        {
            item[i]=0;//全局变量,标记未被选中
            FindWhat(i-1,j);
        }
        else if( j-w[i]>=0 && V[i][j]==V[i-1][j-w[i]]+v[i] )
        {
            item[i]=1;//标记已被选中
            FindWhat(i-1,j-w[i]);//回到装包之前的位置
        }
    }
}

3、空间优化

  l) 空间优化,每一次V(i)(j)改变的值只与V(i-1)(x) {x:1...j}有关,V(i-1)(x)是前一次i循环保存下来的值;

  因此,可以将V缩减成一维数组,从而达到优化空间的目的,状态转移方程转换为 B(j)= max{B(j), B(j-w(i))+v(i)}

  并且,状态转移方程,每一次推导V(i)(j)是通过V(i-1)(j-w(i))来推导的,所以一维数组中j的扫描顺序应该从大到小(capacity到0),否者前一次循环保存下来的值将会被修改,从而造成错误。

 

void FindMaxBetter()//优化空间后的动态规划
{
    int i,j;
    for(i=1;i<=number;i++)
    {
        for(j=capacity;j>=0;j--)
        {
            if(B[j]<=B[j-w[i]]+v[i] && j-w[i]>=0 )//二维变一维
            {
                B[j]=B[j-w[i]]+v[i];
            }
        }
    }
}

 然而不足的是,虽然优化了动态规划的空间,但是该方法不能找到最优解的解组成,因为动态规划寻找解组成一定得在确定了最优解的前提下再往回找解的构成,而优化后的动态规划只用了一维数组,之前的数据已经被覆盖掉,所以没办法寻找,所以两种方法各有其优点。

完整代码:

import java.util.*;

public class backpack01 {

    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);

        int[] w = new int[1005];
        int[] v = new int[1005];
        int[] dp = new int[1005]; dp[0]=0;

        int n = scanner.nextInt();
        int c = scanner.nextInt();
        for(int i=1;i<=n;i++) {
            w[i] = scanner.nextInt();
            v[i] = scanner.nextInt();
        }

        for(int i=1;i<=n;i++)
            for(int j=c;j>=w[i];j--) {
                dp[j] = Math.max(dp[j], dp[j-w[i]]+v[i]);
            }
        System.out.println(dp[c]);
    }
}

 

原文地址:https://www.cnblogs.com/Lemon1234/p/11620691.html

时间: 2024-10-12 07:29:14

动态规划——01背包的相关文章

动态规划/0-1背包

每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为"bg".参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个bg定义一个"快乐度".现给定一个bg列表,上面列出每个bg的快乐度.持续长度.bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最大的快乐度.    例如有4场bg:    第1场快乐度为5,持续1小时,发起人必须在1小时后离开:    第2场快乐度为10,持续2小时,发起人必须在3小时后离开:    第3场快

动态规划01背包记录

01背包是动态规划的一种类型其主要的形式是: 1.所有类型物品每种类型只有一个 2.一次只能取一个且物品不能分割 3.只有取或者不取(所以叫01背包,就是只有这两种情况) 4.在背包容量不满的前提下尽可能多的装入最大价值的物品 设背包的容量为V,第i个物品的重量为weigh[i]对应的价值为price[i];  设容量为j(j的最大值为背包的容量)的背包所能装的最大价值为dp[j] n为所有的物品个数,我们先从第1个数据开始,则此物品重量为weigh[1],则我们将所有大于weigh[1]的背包

[动态规划] 01背包与完全背包

01背包(每种物品的状态为选择或不选择,最多只能选1件): 1.传统的二维数组,第i件物品的重量为w[i],价值为v[i] dp[i][j]保存的是选择前i件物品(每一件物品的状态为选与不选),在背包容量为j的情况下,可以获得的最大价值 两种情况: 一.当前背包容量j<第i件的重量时,第i件背包肯定不能选,放不下去,有dp[i][j]=dp[i-1][j] 二.当前背包容量j>=第i件的重量时,第i件背包可以选,能放得下去,但因为要考虑到所获得最大价值,所以这时候有两种选择,选或不选,我们要在

动态规划--01背包模型

01背包剖析 问题引入 题目来源:ACwing:01背包问题 有 N 件物品和一个容量是 V 的背包.每件物品只能使用一次.第 i 件物品的体积是 vi,价值是 wi.求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大.输出最大价值. 输入格式 第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积. 接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值. 输出格式 输出一个整数,表示最大价值. 数据范围 0<N,V≤1000

动态规划-01背包

先认错,学长们很早之前就讲过了,然而我现在才来写... 01背包 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2--Wn,与之相对应的价值为P1,P2--Pn. 01背包题目的雏形是: 有N件物品和一个容量为V的背包.第i件物品的费用是c[i],价值是w[i].求解将哪些物品装入背包可使价值总和最大. 从这个题目中可以看出,01背包的特点就是:每种物品仅有一件,可以选择放或不放. 其状态转移方程是: f[i][v]=max{f[i-1][v],f[i-1][v-c

【算法学习笔记】30.动态规划 01背包和完全背包的关系

首先先说明一下01背包和完全背包问题的区别 01背包:有 N 件物品和一个容量为 V 的背包.放入第 i 件物品耗费的费用是 Ci,得到的价值是 Wi.求解将哪些物品装入背包可使价值总和最大.(可以不装满) 完全背包:有 N 种物品和一个容量为 V 的背包,每种物品都有无限件可用.放入第 i 种物品 的费用是 Ci,价值是 Wi.求解:将哪些物品装入背包,可使这些物品的耗费的费用总和不超过背包容量,且价值总和最大. 先说结论: 两个问题的最优解都要用DP来解决,实现的过程也非常像只是在内层循环中

Poj1837 Balance 动态规划-01背包

Description Gigel has a strange "balance" and he wants to poise it. Actually, the device is different from any other ordinary balance. It orders two arms of negligible weight and each arm's length is 15. Some hooks are attached to these arms and

动态规划 01背包学习中

#include<iostream> #include<math.h> #include<stdio.h> using namespace std; //int ct=0; //int arr[1000]={0}; struct Bag{ int kg; int value; }; Bag sth[6]={0,0,2,6,2,3,6,5,5,4,4,6}; int bag[8][11]={0}; void dongtaiguihjua() { for(int i=5;i

01背包 -- 动态规划的入门题目

<strong><span style="font-size:18px;">首先说什么是动态规划: 经常听到 DP: Dynamic Programming的缩写 这里的入门题是这样的: 01背包 有重量与价值分别为Wi 和 Vi的 n 个物品.请从中选出物品,在重量综合不超过w的前提下,求出价值最大的. 样例: input: n = 4 (w, v) = {(2.3), (1, 2), (3, 4), (2, 3)} W = 5 outtput: 7(选择的是