汉诺塔的非递归实现(栈)

汉诺塔的非递归实现(栈)

美国学者找的规律:若是偶数,将a、b、c顺时针排列,否则a、c、b排列,然后反复做:

(1)最小盘顺时针移动一个

(2)那两个柱子将最小的移动了,空的话直接移

借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。

输入格式:

输入为一个正整数N,即起始柱上的盘数。

输出格式:

每个操作(移动)占一行,按柱1 -> 柱2的格式输出。

输入样例:

3

输出样例:

a -> c
a -> b
c -> b
a -> c
b -> a
b -> c
a -> c

美国。看人家递归咋写的吧

#include<iostream>
#include<cstdio>
#include<stack>
#include<cmath>
using namespace std;
int main()
{
//  freopen("test.in","r",stdin);
    //freopen("test.out","w",stdout);
    int n,num=0,pan1,now;
    long long times;
    char a[3];
    stack <int> ta[3];
    cin>>n;
    for (int i=n;i>=1;i--)
      ta[0].push(i);
    now=0;
    if (n%2==1)
    {
        a[0]='a';
        a[1]='c';
        a[2]='b';
    }
    else
    {
        a[0]='a';
        a[1]='b';
        a[2]='c';
    }
    times=pow(2,n)-1;
    while (num<times)
    {
        num++;
        pan1=ta[now].top();
        ta[now].pop();
        ta[(now+1)%3].push(pan1);
        printf("%c -> %c\n",a[now],a[(now+1)%3]);
        num++;
        if (num>times)
          break;
        if (ta[now].size()!=0 and (ta[(now+2)%3].size()==0 or ta[now].top()<ta[(now+2)%3].top()))
        {
            ta[(now+2)%3].push(ta[now].top());
            ta[now].pop();
            printf("%c -> %c\n",a[now],a[(now+2)%3]);
        }
        else
        {
            ta[now].push(ta[(now+2)%3].top());
            ta[(now+2)%3].pop();
            printf("%c -> %c\n",a[(now+2)%3],a[now]);
        }
        now=(now+1)%3;
    }
    return 0;
}

原文地址:https://www.cnblogs.com/IamIron-Man/p/11956998.html

时间: 2024-10-14 03:03:09

汉诺塔的非递归实现(栈)的相关文章

5-17 汉诺塔的非递归实现 (25分)

5-17 汉诺塔的非递归实现   (25分) 借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为"a")通过借助柱(标记为"b")移动到目标柱(标记为"c"),并保证每个移动符合汉诺塔问题的要求. 输入格式: 输入为一个正整数N,即起始柱上的盘数. 输出格式: 每个操作(移动)占一行,按柱1 -> 柱2的格式输出. 输入样例: 3 输出样例: a -> c a -> b c -&g

7-17 汉诺塔的非递归实现

7-17 汉诺塔的非递归实现(25 分) 借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为"a")通过借助柱(标记为"b")移动到目标柱(标记为"c"),并保证每个移动符合汉诺塔问题的要求. 输入格式: 输入为一个正整数N,即起始柱上的盘数. 输出格式: 每个操作(移动)占一行,按柱1 -> 柱2的格式输出. 输入样例: 3 输出样例: a -> c a -> b c ->

7-17 汉诺塔的非递归实现 (25分)

一开始看见通过了0.4+,以为是送分题,结果我错了. 花了好长时间看博客没搞懂怎么非递归实现(菜……). 后面看了 https://blog.csdn.net/computerme/article/details/18080511的算法和https://zhuanlan.zhihu.com/p/36085324的非递归实现方法受到启发才把代码给敲出来. 下面简单说一下我理解到的方法吧! 第一步是判断输入的n是奇数还是偶数,若为奇数,则按顺时针以ACB的顺序摆成品字型,若为偶数,则按顺时针以ABC

汉诺塔问题(递归、栈)

修改一下汉诺塔的游戏规则,现在不能直接从左边走到右边,也不能直接右边走到左边. 方法一:递归实现 现在分析一下,比如左边有1~n,那么移动最后一个的情况,就是: 1.1-n-1从左边移动到右边 2.n从左边移动到中间 3.1-n-1从右边移动到左边 4.n从中间移动到右边 5.1-n-1从左边移动到右边 那么,假如我有这样一个f(range,from,to)那么我需要求解的就是f(n,lrft,right),原子情况就是从只有一个数的时候,直接左边中间右边即可. 1 public static

汉诺塔问题的递归解法

汉诺塔问题的递归解法: 实现程序: #include<iostream> using namespace std; void move(int n, char i, char j) { cout << "把" << n << "号从" << i << "移动到" << j << endl; } void hanoi(int n, char x, cha

汉诺塔问题(递归与非递归)

汉诺塔比较经典的实现是利用递归,但也可以利用堆栈. 题意理解:有A,B,C三个柱子,将A柱子上的N个盘子(从大到小排列)移到C柱子上,每次只允许移动一个盘子,并且保证每个柱子上的盘子的排列都是从大到小. 1.递归实现 假设只有一个盘子,那么只需实现 A->C 这个动作: 如果有两个盘子,那么需要 (1)A->B; (2)A->C; (3)B->C; 如果有三个盘子,可以将前两个盘子看作一个盘子,对两个盘子重复以上三个步骤,于是得到N个盘子的递归算法,递归结束的条件是N=1: 1 v

汉诺塔问题非递归算法集锦

巧若拙(欢迎转载,但请注明出处:http://blog.csdn.net/qiaoruozhuo) 汉诺塔问题介绍: 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片,一次只移动一片,不管在哪根针上,小片必在大片上面.当所有的金片都从梵天穿好的那根针上移到另外一概针上时,世界就将在一声霹

从汉诺塔问题来看“递归”本质

汉诺塔问题 大二上数据结构课,老师在讲解"栈与递归的实现"时,引入了汉诺塔的问题,使用递归来解决n个盘在(x,y,z)轴上移动. 例如下面的动图(图片出自于汉诺塔算法详解之C++): 三个盘的情况: 四个盘的情况: 如果是5个.6个.7个....,该如何移动呢? 于是,老师给了一段经典的递归代码: void hanoi(int n,char x,char y,char z){ if(n == 1) move(x,1,z); else{ hanoi(n-1,x,z,y); move(x,

NYOJ 93 汉诺塔(三) 【栈的简单应用】

汉诺塔(三) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描写叙述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候.在当中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔. 不论白天黑夜,总有一个僧侣在依照以下的法则移动这些金片:一次仅仅移动一片.无论在哪根针上.小片必须在大片上面.僧侣们预言.当全部的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中