【题解】毒蛇越狱(FWT+容斥)
问了一下大家咋做也没听懂,按兵不动没去看题解,虽然已经晓得复杂度了....最后感觉也不难
用FWT_OR和FWT_AND做一半分别求出超集和和子集和,然后
- 枚举问号是01,裸的,\(O(2^{cnt[?]})\)
- 默认问号是1,利用子集和求,\(O(2^{cnt[1]})\)
- 默认问号是0,利用超集和求,\(O(2^{cnt[0]})\)
可以知道\(min(cnt)\le n/3\),所以复杂度\(O(n2^n 2^{n/3}Q)\)
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; typedef long long ll;
inline int qr(){
int ret=0,f=0,c=getchar();
while(!isdigit(c)) f|=c==45,c=getchar();
while( isdigit(c)) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1<<20|1;
char s[maxn];
int data[maxn],c[maxn],s0[maxn],s1[maxn],n,q;
int cnt[3];
inline void FWT_AND(int*a,const int&len,const int&tag){
for(int t=1;t<len;t<<=1)
for(int i=0;i<len;i+=t<<1)
for(int k=0;k<t;++k)
a[i+k]+=a[t+i+k]*tag;
}
inline void FWT_OR(int*a,const int&len,const int&tag){
for(int t=1;t<len;t<<=1)
for(int i=0;i<len;i+=t<<1)
for(int k=0;k<t;++k)
a[t+i+k]+=a[i+k]*tag;
}
int num[maxn],u;
int main(){
n=qr(); q=qr();
u=(1<<n)-1;
scanf("%s",s);
for(int t=1;t<1<<n;++t) num[t]=num[t^(t&-t)]+1;
for(int t=0;t<1<<n;++t) data[t]=s[t]-48,s0[t]=data[t],s1[t]=data[t];
FWT_AND(s0,1<<n,1); FWT_OR(s1,1<<n,1);
while(q--){
if(scanf("%s",s)==EOF) return 0;
memset(cnt,0,sizeof cnt);
for(int t=0;t<n;++t){
if(isdigit(s[t])) c[t]=s[t]==49;
else c[t]=2;
++cnt[c[t]];
}
int base=0,wen=0,ans=0,k=min({cnt[0],cnt[1],cnt[2]});
for(int t=0;t<n;++t)
if(c[t]<=1) base=base<<1|c[t],wen<<=1;
else wen=wen<<1|1,base<<=1;
if(cnt[2]==k){
for(int t=wen;~t;--t>=0?t&=wen:t)
ans+=data[t|base];
}else if(cnt[1]==k){
for(int t=base;~t;--t>=0?t&=base:t){
int g=t|wen;
if(num[base^t]&1) ans-=s1[g];
else ans+=s1[g];
}
}else{
base^=u; base^=wen;
for(int t=base;~t;--t>=0?t&=base:t){
int g=t|wen;
if(num[base^t]&1) ans-=s0[g^u];
else ans+=s0[g^u];
}
}
printf("%d\n",ans);
}
return 0;
}
原文地址:https://www.cnblogs.com/winlere/p/11979938.html
时间: 2024-10-31 19:22:57