汉诺塔01

#include<stdio.h>
void  han(int n,char a,char b,char c)
{
	if(n==1)
	{
		printf("%c--%c\n",a,c);
	}
	else
	{
		han(n-1,a,c,b);
		printf("%c--%c\n",a,c);
		han(n-1,b,a,c);
	}
}

int main()
{
	int n;
	char a,b,c;
	a=‘A‘;
	b=‘B‘;
	c=‘C‘;
	scanf("%d",&n);
		han(n,a,b,c);
}

  我们将三根柱子分别命名为A,B,C,

当只有一个盘子的时候,是从A直接放到C上的;

当有两个盘子的时候,是A--B;

A--C;

B--C;

当有三个盘子的时候 是

A--C;

A--B

C--B

A--C

B--A

B--C

A--C

所以,当有n个盘子的时候,第n-1个盘子都是通过A--C--B,B--A--C,这样就可以写出递推的关系。

时间: 2024-10-11 21:49:27

汉诺塔01的相关文章

左神算法第八节课:介绍递归和动态规划(汉诺塔问题;打印字符串的全部子序列含空;打印字符串的全排列,无重复排列;母牛数量;递归栈;数组的最小路径和;数组累加和问题,一定条件下最大值问题(01背包))

暴力递归: 1,把问题转化为规模缩小了的同类问题的子问题 2,有明确的不需要继续进行递归的条件(base case) 3,有当得到了子问题的结果之后的决策过程 4,不记录每一个子问题的解 动态规划 1,从暴力递归中来 2,将每一个子问题的解记录下来,避免重复计算 3,把暴力递归的过程,抽象成了状态表达 4,并且存在化简状态表达,使其更加简洁的可能 一:递归 1. 汉诺塔问题 汉诺塔问题(不能大压小,只能小压大),打印n层汉诺塔从最左边移动到最右边的全部过程. 左中右另称为 from.to.hel

双色汉诺塔问题

问题描述: 已知 n ( n 是偶数)个盘子,大小相同的盘子有两个,叠放在一起,但下面的盘子是红色,上面的盘子是蓝色. 条件: 每次只能移动一个盘子 大盘子不能放在小盘子上面 在移动的过程中不能出现两个大小相同的盘子叠在一起,且下面的盘子是蓝色而上面的盘子是红色的情况. . . . 表示红盘 - - - 表示蓝盘 = = = 表示底座 分析: 注意条件3中 大小相同,上红下蓝 是 先与后非 的关系,两个同时满足才成立. 故这个双色Hanoi塔问题 等价于 从上到下,从小到大依次排列的Hanoi塔

hdu 1207 汉诺塔II (DP+递推)

汉诺塔II Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 4529    Accepted Submission(s): 2231 Problem Description 经典的汉诺塔问题经常作为一个递归的经典例题存在.可能有人并不知道汉诺塔问题的典故.汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往

从汉诺塔问题来看“递归”本质

汉诺塔问题 大二上数据结构课,老师在讲解"栈与递归的实现"时,引入了汉诺塔的问题,使用递归来解决n个盘在(x,y,z)轴上移动. 例如下面的动图(图片出自于汉诺塔算法详解之C++): 三个盘的情况: 四个盘的情况: 如果是5个.6个.7个....,该如何移动呢? 于是,老师给了一段经典的递归代码: void hanoi(int n,char x,char y,char z){ if(n == 1) move(x,1,z); else{ hanoi(n-1,x,z,y); move(x,

bzoj1019: [SHOI2008]汉诺塔(dp)

1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1739  Solved: 1062[Submit][Status][Discuss] Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体. 对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的

汉诺塔(三)

汉诺塔(三) 描述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金片:一次只移动一片,不管在哪根针上,小片必须在大片上面.僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中消灭,而梵塔.庙宇和众生也都将同归于尽. 现在我们把三根针编号为1,2,3. 所

python 实现汉诺塔问题

代码如下: def hano(n,x,y,z): if n==1: print(x,"->",z) else: #将n-1个盘子从x->y hano(n-1,x,z,y) #将剩余的最后一个盘子从x->z print(x,"->",z) #将剩余的n-1个盘子从y->z hano(n-1,y,x,z) n = int(input("请输入汉诺塔的层数:")) hano(n,"A","B&

NYOJ 93 汉诺塔(三) 【栈的简单应用】

汉诺塔(三) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描写叙述 在印度,有这么一个古老的传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵天在创造世界的时候.在当中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔. 不论白天黑夜,总有一个僧侣在依照以下的法则移动这些金片:一次仅仅移动一片.无论在哪根针上.小片必须在大片上面.僧侣们预言.当全部的金片都从梵天穿好的那根针上移到另外一根针上时,世界就将在一声霹雳中

汉诺塔的递归算法与解析

从左到右 A  B  C 柱 大盘子在下, 小盘子在上, 借助B柱将所有盘子从A柱移动到C柱, 期间只有一个原则: 大盘子只能在小盘子的下面. 如果有3个盘子, 大中小号, 越小的越在上面, 从上面给盘子按顺序编号 1(小),2(中),3(大), 后面的原理解析引用这里的编号. 小时候玩过这个游戏, 基本上玩到第7个,第8个就很没有耐心玩了,并且操作的动作都几乎相同觉得无聊.  后来学习编程, 认识到递归, 用递归解决汉诺塔的算法也是我除了简单的排序算法后学习到的第一种算法. 至于递归,简单来说