推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比

一、定义

  1. UserCF:推荐那些和他有共同兴趣爱好的用户喜欢的物品

  2. ItemCF:推荐那些和他之前喜欢的物品类似的物品

根据用户推荐重点是反应和用户兴趣相似的小群体的热点,根据物品推荐着重与用户过去的历史兴趣,即:

  • UserCF是某个群体内的物品热门程度
  • ItemCF是反应本人的兴趣爱好,更加个性化

二、新闻类网站采用UserCF的原因:

  1. 用户大都喜欢热门新闻,特别细粒度的个性化可忽略不计
  2. 个性化新闻推荐更强调热点,热门程度和实效性是推荐的重点,个性化重要性则可降低
  3. ItemCF需要维护一张物品相关度的表,当物品量更新速度太快时,此表的维护在技术上有难度。新闻类网站对于新用户可直接推荐热门新闻即可
  4. 对于电商、音乐、图书等网站而言,ItemCF的优势更大:
    1. 用户的兴趣比较固定和持久;
    2. 不需要太过考虑流行度,只需要帮用户发现他研究领域相关物品即可
  5. 技术角度考量
    1. UserCF需要维护一个用户相似度矩阵
    2. ItemCF需要维护一个物品相似度矩阵

三、优缺点对比

项目 UserCF ItemCF
性能 适用于用户较少的场合,如果用户过多,计算用户相似度矩阵的代价交大 适用于物品数明显小于用户数的场合,如果物品很多,计算物品相似度矩阵的代价交大
领域 实效性要求高,用户个性化兴趣要求不高 长尾物品丰富,用户个性化需求强烈
实时性 用户有新行为,不一定需要推荐结果立即变化 用户有新行为,一定会导致推荐结果的实时变化
冷启动 在新用户对少的物品产生行为后,不能立即对他进行个性化推荐,因为用户相似度是离线计算的 
新物品上线后一段时间,一旦有用户对物品产生行为,就可以将新物品推荐给其他用户
新用户只要对一个物品产生行为,就能推荐相关物品给他,但无法在不离线更新物品相似度表的情况下将新物品推荐给用户
推荐理由 很难提供 可以根据用户历史行为归纳推荐理由
时间: 2024-10-07 08:48:44

推荐算法之用户推荐(UserCF)和物品推荐(ItemCF)对比的相关文章

关于2015阿里移动推荐算法大赛的总结(二)——推荐算法

虽然开始走错了路,但是也学到了东西,美团技术团队的文档还是不错的,喜欢的童鞋可以经常去瞅瞅,后面我会给链接的~~~~ -------------------------------------------------------------- 具体流程 基本流程如下,借用美团的图. 从框架的角度看,推荐系统基本可以分为数据层.触发层.融合过滤层和排序层.数据层包括数据生成和数据存储,主要是利用各种数据处理工具对原始日志进行清洗,处理成格式化的数据,落地到不同类型的存储系统中,供下游的算法和模型使

常见推荐算法科普

推荐算法 目前主流的推荐算法主要包含内容关联算法, 协同过滤算法. 内容关联算法(Content-Based) CB算法的原理是将一个item的基本属性, 内容等信息提取出来, 抽成一个taglist, 为每个tag赋一个权重. 剩下的事情就跟一个搜索引擎非常类似了, 将所有item对应的taglist做一下倒排转换, 放到倒排索引服务器中存储起来. 当要对某一个item做相关推荐的时候, 将这个item对应的taglist拿出来拼成一个类似搜索系统中的query表达式, 再将召回的结果做一下排

一个简单的协同过滤推荐算法

1.推荐系统简介 个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品. 2.推荐系统分类 2.1基于内容的推荐(Content-based Recommendation) 基于内容的推荐系统的核心思想是挖掘被推荐对象的信息.基于内容的推荐算法的前提假设是:如果用户喜欢物品a,那么用户也应该会喜欢与a类似的物品.由于笔者的目的是侧重于介绍协同过滤推荐算法,所以对基于内容的推荐算法举个简单的例子一带而过: 假设一首歌有:名称.歌手.风格.作曲人这4个属性.如果用户Alice对

推荐算法review

本文将按照作者学习的顺序,对推荐算法进行一个综述性的介绍,可能会有些跳跃性.一则供自己后续不时翻阅,二则分享给读者.传播知识是一件很快乐的事情. 1. 基于相似度的方法(协同过滤) 基于相似度的方法是一类最为成功的推荐算法的代表.其在学术上已被广泛研究,并且在电商领域广泛应用.该类方法又可以进一步分为两类:基于用户相似度的推荐算法和基于物品相似度的推荐算法.基于用户相似度的推荐算法的基本假设是:在之前的判断上更相似的用户倾向于在之后的判断上也更相似.因此,对于一个目标用户对某个商品的评分,可以通

【甘道夫】Mahout推荐算法编程实践

引言 Taste是曾经风靡一时的推荐算法框架,后来被并入Mahout中,Mahout的部分推荐算法基于Taste实现. 下文介绍基于Taste实现最常用的UserCF和ItemCF. 本文不涉及UserCF和ItemCF算法的介绍,这方面网上资料很多,本文仅介绍如何基于Mahout编程实现. 欢迎转载,请注明来源: http://blog.csdn.net/u010967382/article/details/39183839 步骤一:构建数据模型 UserCF和ItemCF算法的输入数据是用户

关于2015阿里移动推荐算法大赛的总结(三)——机器学习

关于2015阿里移动推荐算法大赛的总结(一) 关于2015阿里移动推荐算法大赛的总结(二)--推荐算法 关于2015阿里移动推荐算法大赛的总结(三)--机器学习 后来我们回归到正途上,虽然我们也想用深度学习的方法,但是毕竟还是菜鸟的水平,所以把目标定在能用机器学习跑通一遍,顺带熟悉一下各种机器学习算法的实际应用.但是最后的最后我们只用了LR,然后就受打击了.哈哈~ 想用机器学习的方法,那么思路其实也很明确,问题是那一天用户是买还是不买,那么可以看成是二分法.通过用户行为方式来判断是否会购买.就是

(转) 基于MapReduce的ItemBase推荐算法的共现矩阵实现(一)

  转自:http://zengzhaozheng.blog.51cto.com/8219051/1557054 一.概述 这2个月研究根据用户标签情况对用户的相似度进行评估,其中涉及一些推荐算法知识,在这段时间研究了一遍<推荐算法实践>和<Mahout in action>,在这里主要是根据这两本书的一些思想和自己的一些理解对分布式基于ItemBase的推荐算法进行实现.其中分两部分,第一部分是根据共现矩阵的方式来简单的推算出用户的推荐项,第二部分则是通过传统的相似度矩阵的方法来

电商推荐算法

一. 电商推荐算法简述 目前比较多的电商模式为B2B,B2C,O2O,在本文介绍和需要举例说明的地方B2B电商模式为主. 电商推荐根据推荐内容不同分为物品推荐.商家推荐:流行的推荐应用主要有三个方面:1)针对用户的浏览.搜索等行为所做的相关推荐:2)根据购物车或物品收藏所做的相似物品推荐:3)根据历史会员购买行为记录,利用推荐机制做邮件推送或会员营销.其中推荐算法主要分为以下几个类: 1.基于用户的协同过滤推荐算法 a. 找到与目标用户兴趣相似的用户集合 b. 找到这个集合中用户喜欢的.并且目标

BAT大牛亲授-个性化推荐算法实战

第1章 个性化推荐算法综述 个性化推荐算法综述部分,主要介绍个性化推荐算法综述,本课程内容大纲以及本课程所需要准备的编程环境与基础知识. 1-1 个性化推荐算法综述 1-2 个性化召回算法综述 第2章 基于邻域的个性化召回算法LFM 本章节重点介绍一种基于邻域的个性化召回算法,LFM.从LFM算法的理论知识与数学原理进行介绍.并结合公开数据集,代码实战LFM算法. 2-1 LFM算法综述 2-2 LFM算法的理论基础与公式推导 2-3 基础工具函数的代码书写 2-4 LFM算法训练数据抽取 2-