Language: Default Dual Core CPU
Description As more and more computers are equipped with dual core CPU, SetagLilb, the Chief Technology Officer of TinySoft Corporation, decided to update their famous product - SWODNIW. The routine consists of N modules, and each of them should run in a certain core. The costs for all the routines to execute on two cores has been estimated. Let‘s define them as Ai and Bi. Meanwhile, M pairs Input There are two integers in the first line of input data, N and M (1 ≤ N ≤ 20000, 1 ≤ M ≤ 200000) . The next N lines, each contains two integer, Ai and Bi. In the following M lines, each contains three integers: a, b, w. The meaning is that if module a and module b don‘t execute on the same core, you should pay extra w dollars for the data-exchange Output Output only one integer, the minimum total cost. Sample Input 3 1 1 10 2 10 10 3 2 3 1000 Sample Output 13 Source POJ Monthly--2007.11.25, Zhou Dong |
最小割的模板,其实就是最大流
注意:
Verson 2:
1.修复Bug,在本次模板中修改了q队列的长度,
题目,裸最小割,
设S为用模块A的集合,T为模块B
则
s->任务i //模块B的cost
任务i->t //模块A的cost
任务i->任务j //(i,j)不在一个集合的cost,注意最小割,要2个方向(最小割只保证s->t没路径,t->s的路径不用割)
#include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #include<functional> #include<iostream> #include<cmath> #include<cctype> #include<ctime> using namespace std; #define For(i,n) for(int i=1;i<=n;i++) #define Fork(i,k,n) for(int i=k;i<=n;i++) #define Rep(i,n) for(int i=0;i<n;i++) #define ForD(i,n) for(int i=n;i;i--) #define RepD(i,n) for(int i=n;i>=0;i--) #define Forp(x) for(int p=pre[x];p;p=next[p]) #define Forpiter(x) for(int &p=iter[x];p;p=next[p]) #define Lson (x<<1) #define Rson ((x<<1)+1) #define MEM(a) memset(a,0,sizeof(a)); #define MEMI(a) memset(a,127,sizeof(a)); #define MEMi(a) memset(a,128,sizeof(a)); #define INF (2139062143) #define F (100000007) #define MAXn (20000+10) #define MAXm (200000+10) #define MAXN (MAXn+2) #define MAXM ((MAXn*2+MAXm*2)*2+100) long long mul(long long a,long long b){return (a*b)%F;} long long add(long long a,long long b){return (a+b)%F;} long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;} typedef long long ll; class Max_flow //dinic+当前弧优化 { public: int n,s,t; int q[MAXN]; int edge[MAXM],next[MAXM],pre[MAXN],weight[MAXM],size; void addedge(int u,int v,int w) { edge[++size]=v; weight[size]=w; next[size]=pre[u]; pre[u]=size; } void addedge2(int u,int v,int w){addedge(u,v,w),addedge(v,u,0);} bool b[MAXN]; int d[MAXN]; bool SPFA(int s,int t) { For(i,n) d[i]=INF; MEM(b) d[q[1]=s]=0;b[s]=1; int head=1,tail=1; while (head<=tail) { int now=q[head++]; Forp(now) { int &v=edge[p]; if (weight[p]&&!b[v]) { d[v]=d[now]+1; b[v]=1,q[++tail]=v; } } } return b[t]; } int iter[MAXN]; int dfs(int x,int f) { if (x==t) return f; Forpiter(x) { int v=edge[p]; if (weight[p]&&d[x]<d[v]) { int nowflow=dfs(v,min(weight[p],f)); if (nowflow) { weight[p]-=nowflow; weight[p^1]+=nowflow; return nowflow; } } } return 0; } int max_flow(int s,int t) { int flow=0; while(SPFA(s,t)) { For(i,n) iter[i]=pre[i]; int f; while (f=dfs(s,INF)) flow+=f; } return flow; } void mem(int n,int s,int t) { (*this).n=n; (*this).t=t; (*this).s=s; size=1; MEM(pre) } }S; int n,m; int main() { // freopen("poj3469.in","r",stdin); // freopen(".out","w",stdout); scanf("%d%d",&n,&m); int s=1,t=n+2; S.mem(n+2,s,t); For(i,n) { int ai,bi; scanf("%d%d",&ai,&bi); S.addedge2(i+1,t,ai); S.addedge2(s,i+1,bi); } For(i,m) { int a,b,w; scanf("%d%d%d",&a,&b,&w); S.addedge(a+1,b+1,w); S.addedge(b+1,a+1,w); } cout<<S.max_flow(s,t)<<endl; return 0; }