【模板】无向图的割顶

无向图的割顶:

Vector <int> G[] :邻接表存图

Int pre[] :存储时间戳

Int low[] : u及其后代所能连回的最早的祖先的pre值

Int iscut[] : =true表示是割顶,=false不是割顶

Dfs函数在主函数调用时,fa预设为-1。

vector <int> G[MAXN];
int pre[MAXN],iscut[MAXN],low[MAXN],dfs_clock;
int dfs(int u,int fa)
{
    int lowu=pre[u]=++dfs_clock;
    int child=0;
    for (int i=0;i<G[u].size();i++)
    {
        int v=G[u][i];
        if (!pre[v])
        {
            child++;
            int lowv=dfs(v,u);
            lowu=min(lowu,lowv);
            if (lowv>=pre[u])//如果求桥,去掉等于号
            {
                iscut[u]=true;
            }
        }else
        if (pre[v]<pre[u] && v!=fa)
        {
            lowu=min(lowu,pre[v]);
        }
    }
    if (fa<0 && child==1) iscut[u]=0;
    return low[u]=lowu;
}
时间: 2024-10-14 11:14:56

【模板】无向图的割顶的相关文章

图论(无向图的割顶):POJ 1144 Network

Network Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N . No two places have the same number. The lines are bidirectional and always connect

连通分量 无向图的割顶和桥 无向图的双连通分量 有向图的强连通分量

时间戳 dfs_clock :说白了就是记录下访问每个结点的次序.假设我们用 pre 保存,那么如果 pre[u] > pre[v], 那么就可以知道先访问的 v ,后访问的 u . 现在给定一条边, (u, v), 且 u 的祖先为 fa, 如果有 pre[v] < pre[u] && v != fa, 那么 (u, v) 为一条反向边. 1 求连通分量: 相互可达的节点称为一个连通分量: #include <iostream> #include <cstd

无向图求割顶与桥

无向图求割顶与桥 对于无向图G,如果删除某个点u后,连通分量数目增加,称u为图的关节点或割顶.对于连通图,割顶就是删除之后使图不再连通的点.如果删除边(u,v)一条边,就可以让连通图变成不连通的,那么边(u,v)是桥. 具体的概念和定义比较多,在刘汝佳<<训练指南>>P312-314页都有详细的介绍. 下面来写求无向图割顶和桥的DFS函数.我们令pre[i]表示第一次访问i点的时间戳,令low[i]表示i节点及其后代所能连回(通过反向边)的最早祖先的pre值. 下面的dfs函数返回

无向图的割顶和桥,无向图的双连通分量入门详解及模板 -----「转载」

https://blog.csdn.net/stillxjy/article/details/70176689 割顶和桥:对于无向图G,如果删除某个节点u后,连通分量数目增加,则称u为图的割顶:如果删除某条边后,连通分量数目增加,则称该边为图的桥.对于连通图删除割顶或桥后都会使得图不再连通 以下我,我们利用dfs的性质来快速找出一个连通图中的所有的割顶和桥 首先我们要引入”时间戳”这个概念: 时间戳:表示在进行dfs时,每个节点被访问的先后顺序.每个节点会被标记两次,分别用pre[],和post

UVA 315 :Network (无向图求割顶)

题目链接 题意:求所给无向图中一共有多少个割顶 用的lrj训练指南P314的模板 #include<bits/stdc++.h> using namespace std; typedef long long LL; const int N=109; struct Edge { int to,next; Edge(){} Edge(int _to,int _next) { to=_to; next=_next; } }edge[N*N*2]; int head[N]; int dfn[N],lo

无向图的割顶(poj1523,1144)

割顶:表示无向图中的点,这个点删除之后,原图不在联通,这样的点就是割顶. 怎么求一个图中的割顶呢? 把无向图变成一颗树,dfs时候搜索到在dfs树上的称为树边,搜索是出现后代指向祖先的边称为反向边. 对于根节点,当他存在两个或两个以上的子节点时,那么他就是割顶. 而对于其他节点u,当且仅当u存在一个子节点v,使得v及其所有的后代都没有反向边连回u的祖先时,u是一个割顶. 那么判断就很简单,这里给出两个模板: 题目:poj1523 和 1144都是裸的求割顶的题目 通用模板: #include <

无向图的割顶和桥

割顶: 关键点,删掉这个点后,图的连通分量 + 1: 桥: 在割顶的基础上,发现删除 (u,v) 这条边,图就变成非连通的了. 如何找出所有割顶和桥: 时间戳: 在无向图的基础上,DFS建树的过程中,各点进栈和出栈的时间 dfs_clock,进栈的时间 pre[],出栈的时间 post[] 在DFS程序中的体现就是: void previst(int u) { pre[u]= ++dfs_clock; } void postvist(int u) { post[u] = ++dfs_clock;

无向图的割顶和桥的性质 以及双连通分量的求解算法

割顶:对于无向图G,如果删除某个点u后,连通分量的数目增加, 称u为图的割顶.对于连通图,割顶就是删除之后使图不再连通的点. 割顶的求解依如下定理: 在无向连通图G的DFS树中,非根结点u是G的割顶当且仅当u存在一个子节点v,使得v及其所有后代都没有反向边连回u的祖先(连回u)不算. 算法实现: 采用时间戳,在dfs遍历的过程中给每个节点u均标记以前序时间戳pre[u],设low[u]为u及其后代所能连回的最早的祖先的pre值,则定理中的条件就可以简写成结点u存在一个子结点v,使得 low[v]

poj 1144 Network【无向图求割顶模板题】

Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N. No two places have the same number. The lines are bidirectional and always connect together