P3390矩阵快速幂

题目背景

矩阵快速幂

题目描述

给定n*n的矩阵A,求A^k

输入输出格式

输入格式:

第一行,n,k

第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素

输出格式:

输出A^k

共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7

输入输出样例

输入样例#1:

2 1
1 1
1 1

输出样例#1:

1 1
1 1

说明

n<=100, k<=10^12, |矩阵元素|<=1000

//上板子!
#include<iostream>
#include<cstdio>
#define ll long long
#define mod 1000000007

using namespace std;
ll n,m;
struct node
{
    ll a[101][101];
}ans,base;

ll init()
{
    ll x=0,f=1;char c=getchar();
    while(c>‘9‘||c<‘0‘){if(c==‘-‘)f=-1;c=getchar();}
    while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();}
    return x*f;
}

node mul(node a,node b)
{
    node res;
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
        {
            res.a[i][j]=0;
            for(int k=1;k<=n;k++)
              res.a[i][j]=(res.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
        }
    return res;
}

node qw(node a,ll k)
{
    node res=a;
    while(k)
    {
        if(k&1) a=mul(a,res);
        res=mul(res,res);k>>=1;
    }
    return a;
}

int main()
{
    n=init();m=init();
    for(int i=1;i<=n;i++)
      for(int j=1;j<=n;j++)
      {
          ans.a[i][j]=init();
      }
    m--;
    ans=qw(ans,m);
    for (int i=1;i<=n;i++)
    {
        for (int j=1;j<n;j++) printf("%d ",ans.a[i][j]);
        printf("%d\n",ans.a[i][n]);
    }
}

算法:矩阵快速幂

时间: 2024-11-03 22:41:12

P3390矩阵快速幂的相关文章

洛谷P3390矩阵快速幂

#include <cstdio>#include <cstring>#include <iostream>#include <algorithm>typedef long long ll;using namespace std; ll n,m,i,j,k; struct Matrix { ll a[105][105]; inline Matrix operator *(const Matrix &b)const { Matrix ret; for

矩阵快速幂优化线性递推

我们熟知的斐波那契数列递推公式是: \(f(n)=f(n-1)+f(n-2)\) 假设我们需要求斐波那契数列的第n项,当n非常大(如n=1e9)的时候,递推肯定超时.我们不妨设: \(\binom{f_{n}}{f_{n-1}}=\begin{pmatrix}a & b\\ c & d\end{pmatrix}\binom{f_{n-1}}{f_{n-2}}\) 将等式右边乘开,得到: \(\binom{af_{n-1}+bf_{n-2}}{cf_{n-1}+df_{n-2}}\) 要使其

矩阵乘法 洛谷 P3390【模板】矩阵快速幂

P3390 [模板]矩阵快速幂 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂

P3390 【模板】矩阵快速幂

题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 如题,矩阵快速幂. 已知,矩阵乘

Luogu P3390 【模板】矩阵快速幂

题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 1 #include <c

洛谷P3390 【模板】矩阵快速幂

题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 题解:蒟蒻的模板库 代码: #i

矩阵快速幂刷题系列

来源自http://blog.csdn.net/chenguolinblog/article/details/10309423 hdu 1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 5587    Accepted Submission(s): 4200 Problem Description A为一个方阵,则Tr

HDU 1757 A Simple Math Problem (矩阵快速幂)

[题目链接]:click here~~ [题目大意]: If x < 10 f(x) = x. If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + -- + a9 * f(x-10); 问f(k)%m的值. [思路]:矩阵快速幂,具体思路看代码吧,注意一些细节. 代码: #include<bits/stdc++.h> using namespace std; typedef long long LL; const

Codeforces Round #291 (Div. 2) E - Darth Vader and Tree (DP+矩阵快速幂)

这题想了好长时间,果断没思路..于是搜了一下题解.一看题解上的"快速幂"这俩字,不对..这仨字..犹如醍醐灌顶啊...因为x的范围是10^9,所以当时想的时候果断把dp递推这一方法抛弃了.我怎么就没想到矩阵快速幂呢.......还是太弱了..sad..100*100*100*log(10^9)的复杂度刚刚好. 于是,想到了矩阵快速幂后,一切就变得简单了.就可以把距离<=x的所有距离的点数都通过DP推出来,然后一个快速幂就解决了. 首先DP递推式很容易想到.递推代码如下: for(