机器学习概要

机器学习主要分两种,一种是监督学习,一种是无监督学习。

一、监督学习

监督学习(supervised learning)是一种已知样本类别的学习方式。

监督学习有两种情况。

一种是回归。对于连续量来说,通过样本确定其回归的模型,求得代价最小的回归方程,来预测新的数据,这种方式称为回归。

如:房屋成交价格的预测。

另一种是分类。对于离散量来说,通过已知样本类别的分析,来预测未知数据的类别,这种方式称为分类。

如:通过肿瘤面积等属性预测肿瘤是否为良性、判断邮件是否为垃圾邮件等。

二、无监督学习

无监督学习(unsupervised learning)是未知样本分类的学习。计算机通过学习来对数据进行分类,所以这种方法称为分类。

如:搜索引擎中新闻的分类。

时间: 2024-10-05 04:18:30

机器学习概要的相关文章

[转载]从机器学习谈起

在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一:  图1 机器学习界的执牛耳者与互联网界的大鳄的联

转载计算机的潜意识的文章:机器学习的入门级经典读物

在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这篇非常长的文章呢? 我并不直接回答这个问题前.相反,我想请大家看两张图,下图是图一:  图1 机器学习界的执牛耳者与互联网界的大鳄的联

推荐文章:机器学习:“一文读懂机器学习,大数据/自然语言处理/算法全有了

PS:文章主要转载自CSDN大神"黑夜路人"的文章:          http://blog.csdn.NET/heiyeshuwu/article/details/43483655      本文主要对机器学习进行科普,包括机器学习的定义.范围.方法,包括机器学习的研究领域:模式识别.计算机视觉.语音识别.自然语言处理.统计学习和数据挖掘.这是一篇非常好的文章,尤其感学原文作者~          http://www.thebigdata.cn/JieJueFangAn/1308

一文读懂机器学习,大数据/自然语言处理/算法全有了……

原文地址 http://www.open-open.com/lib/view/open1420615208000.html http://www.cnblogs.com/subconscious/p/4107357.html 引论 在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便全然不了解机器学习的人也能了解机器学习.而且上手相关的实践.这篇文档也算是 EasyPR开发的番外篇.从这里開始.必须对机器学习了解才干进一步介绍EasyPR的内核.当然,本文也面对一般读者.不会对阅读有

微软机器学习Azure Machine Learning入门概览

Azure Machine Learning(简称“AML”)是微软在其公有云Azure上推出的基于Web使用的一项机器学习服务,机器学习属人工智能的一个分支,它技术借助算法让电脑对大量流动数据集进行识别.这种方式能够通过历史数据来预测未来事件和行为,其实现方式明显优于传统的商业智能形式.微软的目标是简化使用机器学习的过程,以便于开发人员.业务分析师和数据科学家进行广泛.便捷地应用.这款服务的目的在于“将机器学习动力与云计算的简单性相结合”.AML目前在微软的Global Azure云服务平台提

从机器学习谈起

  有机会一定要去了解 转载于http://www.cnblogs.com/subconscious/p/4107357.html,原文作者:计算机的潜意识 在 本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是 EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有

【机器学习快讯】20150206机器学习快讯

机器学习视野 <10 Machine Learning Experts You Need to Know>最值得关注的10位机器学习专家:Geoffrey Hinton.Michael I Jordan.Andrew Ng.Jeff Hawkins.Yann LeCun.Terry Sejnowski.David M. Blei.Daphne Koller.Zoubin Ghahramani.Sebastian Thrun DEEPLEARNING.UNIVERSITY的论文库已经收录了963

机器学习入门文章

转自作者:计算机的潜意识 链接:http://www.cnblogs.com/subconscious/p/4107357.html 在本篇文章中,我将对机器学习做个概要的介绍.本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践.这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介绍EasyPR的内核.当然,本文也面对一般读者,不会对阅读有相关的前提要求. 在进入正题前,我想读者心中可能会有一个疑惑:机器学习有什么重要性,以至于要阅读完这

机器学习之&amp;&amp;SVM支持向量机入门:Maximum Margin Classifier

概率论只不过是把常识用数学公式表达了出来. --拉普拉斯 0. 前言 这是一篇SVM的入门笔记,来自我对PlusKid.JerryLead.July等大神文章的拜读心得,说是心得还不如说是读文笔记,希望在自己理解的层面上给予SVM这个伟大的机器学习算法概要介绍,让更多的热爱机器学习的伙伴们进入到SVM的世界.PS:文章会以问答的形式为主要结构. 1.概念 1.1.什么是SVM? 支持向量机即 Support Vector Machine,简称 SVM .(第一次接触SVM是在阿里大数据竞赛的时候