最小生成树Kruskal算法+并查集实现

今天刚掌握Kruskal算法,写下随笔。

对于稀疏图来说,用Kruskal写最小生成树效率更好,加上并查集,可对其进行优化。

Kruskal算法的步骤:

1.对所有边进行从小到大的排序。

2.每次选一条边(最小的边),如果如果形成环,就不加入(u,v)中,否则加入。那么加入的(u,v)一定是最佳的。

并查集:

我们可以把每个连通分量看成一个集合,该集合包含了连通分量的所有点。而具体的连通方式无关紧要,好比集合中的元素没有先后顺序之分,只有“属于”与“不属于”的区别。图的所有连通分量可以用若干个不相交集合来表示。

而并查集的精妙之处在于用数来表示集合。如果把x的父结点保存在p[x]中(如果没有父亲,p[x]=x),则不难写出结点x所在树的递归程序:

find(int x) {return p[x]==x?x:p[x]=find(p[x]);}

意思是,如果p[x]=x,说明x本身就是树根,因此返回x;否则返回x的父亲p[x]所在树的根结点。

既然每棵树表示的只是一个集合,因此树的形态是无关紧要的,并不需要在“查找”操作之后保持树的形态不变,只要顺便把遍历过的结点都改成树根的儿子,下次查找就会快很多了。如下图所示:

设第i条边的端点序号和权值分别保存在u[i],v[i],w[i]中,而排序后第i小的边保存在r[i]中。(间接排序是指排序的关键字是对象的代号,而不是对象本身。)

结合hdoj1863代码如下:

#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#define N 150
using namespace std;
int m,n,u[N],v[N],w[N],p[N],r[N];
int cmp(const int i,const int j) {return w[i]<w[j];}
int find(int x) {return p[x]==x?x:p[x]=find(p[x]);}
int kruskal()
{
    int cou=0,x,y,i,ans=0;
    for(i=0;i<n;i++) p[i]=i;
    for(i=0;i<m;i++) r[i]=i;
    sort(r,r+m,cmp);
    for(i=0;i<m;i++)
    {
        int e=r[i];x=find(u[e]);y=find(v[e]);
        if(x!=y) {ans += w[e];p[x]=y;cou++;}
    }
    if(cou<n-1) ans=0;
    return ans;
}

int main()
{
    int i,ans;
    while(scanf("%d%d",&m,&n)!=EOF&&m)
    {
        for(i=0;i<m;i++)
        {
            scanf("%d%d%d",&u[i],&v[i],&w[i]);
        }
        ans=kruskal();
        if(ans) printf("%d\n",ans);
        else printf("?\n",ans);
    }
    return 0;
}
时间: 2024-11-07 08:07:22

最小生成树Kruskal算法+并查集实现的相关文章

模板——最小生成树kruskal算法+并查集数据结构

并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios

hdu-1863畅通工程 最小生成树克鲁斯卡尔算法kruskal(并查集实现)

畅通工程 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 16994    Accepted Submission(s): 7134 Problem Description 省政府"畅通工程"的目标是使全省任何两个村庄间都可以实现公路交通(但不一定有直接的公路相连,只要能间接通过公路可达即可).经过调查评估,得到的统计表中列出

最小生成树 kruskal算法简介

生成树--在一个图中的一个联通子图  使得所有的节点都被(访问) 最小生成树 (MST) 即联通子图的总代价(路程)最小 已知的一个图 有n个点 m条边 kruskal的算法如下 先对边从小到大排序 从最小的边起,不停的合并这条边的两个节点到一个集合,如果这条边的两个节点已经在一个集合里,则无视,否则形成回路(显然错误)直到所有的节点并到一个集合里 这里需要用到并查集来合并节点 1 int cmp(const int i,const int j) { 2 return w[i] < w[j];

【CodeForces】827 D. Best Edge Weight 最小生成树+倍增LCA+并查集

[题意]给定n个点m条边的带边权无向连通图,对每条边求最大边权,满足其他边权不变的前提下图的任意最小生成树都经过它.n,m<=2*10^5,1<=wi<=10^9. [算法]最小生成树+倍增LCA+并查集 [题解]首先求出图的一个最小生成树,则所有边分成树边和非树边. 对于非树边(u,v),假设u和v在最小生成树上的路径的最大边权Max,那么一定满足w(u,v)<=Max /////////////////////////////////////// 原文地址:https://ww

SOJ4339 Driving Range 最小生成树 kruskal算法

典型的最小生成树 然后求最大的一条边 附上链接 http://cstest.scu.edu.cn/soj/problem.action?id=4339 需要注意的是有可能有 "IMPOSSIBLE" 的情况 这里用一个flag标记 记录所并的节点 只有flag = n时才能成功 负责就 "IMPOSSIBLE" 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring&g

最小生成树 Kruskal算法

Kruskal算法 1.概览 Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪婪算法的应用.和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效. 2.算法简单描述 1).记Graph中有v个顶点,e个边 2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边 3).将原图Graph中所有e个边按权值从小到大排序 4)

无向图最小生成树Kruskal算法

问题 最小生成树的Kruskal算法 描述:有A.B.C.D四个点,每两个点之间的距离(无方向)是(第一个数字是两点之间距离,后面两个字母代表两个点):(1,'A','B'),(5,'A','C'),(3,'A','D'),(4,'B','C'),(2,'B','D'),(1,'C','D') 生成边长和最小的树,也就是找出一种连接方法,将各点连接起来,并且各点之间的距离和最小. 思路说明: Kruskal算法是经典的无向图最小生成树解决方法.此处列举两种python的实现方法.这两种方法均参考

最小生成树Kruskal算法的提出者Joseph Bernard Kruskal,Jr.

熟悉算法中的最小生成树的朋友都晓得有一个Kruskal算法,这个算法就是由题目中那个名字很长的人提出的.因为他功绩卓越,尊称他为Kruskal. Kruskal生于1928年1月29日,卒于2010年9月19日,美国人,维基里的词条中包含的头衔是:数学家.统计学家.计算机科学家.心理测量学专家. kruskal分别就读过芝加哥大学和普林斯顿大学,1954年获得博士学位. 下面链接中是一篇几年他的文章,从中可以了解他的更多成就.顺便说一句,他的父母和兄弟也都很牛. http://pan.baidu

并查集扩展之最小生成树Kruskal算法

并查集有很多经典的应用.在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中. 其中一个非常经典的应用是最小生成树的Kruskal算法.给定一个具有n个节点的连通图,它的生成树是原图的一个子图,包含所有n个节点,且有保持图连通的最少的边(n-1条边).边权值最小的生成树是最小生成树. kruskal算法是一个贪心算法,把所有的边按权值从小到大依次考虑,如果当前边加进生成树中会出现回路