【专题】平衡树

【旋转】

平衡树中的旋转是指在不改变中序遍历的前提下改变树的形态的方式。(中序遍历=排名顺序)

右旋将当前点的左节点旋上来,左旋反之。(图侵删)

void rturn(int &k){
    int o=t[k].l;
    t[k].l=t[o].r;
    t[o].r=k;
    up(k);up(o);
    k=o;
}

原根k,新根o。

1.把k的左节点o解放出来并更新为o的右节点。

2.解放出来的o成为新根,其右孩子赋为k。

【Treap】树堆

功能:维护支持单点插入和单点删除的排名树。

特点:给每个节点随机堆权,在维持排名不变的前提下通过旋转维护堆结构,从而能使高度平衡。

Treap的左子树<根节点,右子树>根节点。

操作:

1.插入:递归找到适合插入的空位置定义新节点,回溯时维护堆性质。

2.删除:递归找到数字,然后通过比较左右孩子堆权向下旋转到底部删除。

3.查找

细节:

1.一定要时时维护堆性质,否则速度严重变慢。

2.记得srand。

例题和模版:【BZOJ】3224: Tyvj 1728 普通平衡树

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100010;
struct tree{int l,r,sz,rnd,num;}t[maxn*2];
int n,sz,root;
void up(int k){t[k].sz=1+t[t[k].l].sz+t[t[k].r].sz;}
void lturn(int &k){
    int o=t[k].r;
    t[k].r=t[o].l;
    t[o].l=k;
    up(k);up(o);
    k=o;
}
void rturn(int &k){
    int o=t[k].l;
    t[k].l=t[o].r;
    t[o].r=k;
    up(k);up(o);
    k=o;
}
void ins(int &k,int x){
    if(!k){k=++sz;t[k].rnd=rand();t[k].num=x;t[k].sz=1;return;}//return
    t[k].sz++;
    if(x<=t[k].num){
        ins(t[k].l,x);
        if(t[t[k].l].rnd<t[k].rnd)rturn(k);//turn
    }
    else{
        ins(t[k].r,x);
        if(t[t[k].r].rnd<t[k].rnd)lturn(k);
    }
}
void del(int &k,int x){
    //t[k].sz--;
    if(t[k].num==x){
        if(t[k].l*t[k].r==0){k=t[k].l+t[k].r;return;}
        if(t[t[k].l].rnd<t[t[k].r].rnd){
            rturn(k);
            t[k].sz--;
            del(t[k].r,x);
        }
        else{
            lturn(k);
            t[k].sz--;
            del(t[k].l,x);
        }
    }
    else if(x<t[k].num)t[k].sz--,del(t[k].l,x);else t[k].sz--,del(t[k].r,x);
}
int find(int k,int x){
    if(!k)return 0;//!k
    if(x<=t[k].num)return find(t[k].l,x);
    else return t[t[k].l].sz+1+find(t[k].r,x);
}
int rank(int k,int x){
    if(t[t[k].l].sz+1==x)return t[k].num;
    if(x<t[t[k].l].sz+1)return rank(t[k].l,x);
    else return rank(t[k].r,x-t[t[k].l].sz-1);
}
int pre(int k,int x){
    if(!k)return -1;
    if(t[k].num<x)return max(t[k].num,pre(t[k].r,x));
    else return pre(t[k].l,x);
}
int suc(int k,int x){
    if(!k)return 0x3f3f3f3f;
    if(t[k].num>x)return min(t[k].num,suc(t[k].l,x));
    else return suc(t[k].r,x);
}
int main(){
    srand(233);//srand!!!!!!!!!!
    scanf("%d",&n);sz=root=0;
    for(int i=1;i<=n;i++){
        int opt,x;
        scanf("%d%d",&opt,&x);
        if(opt==1)ins(root,x);
        if(opt==2)del(root,x);
        if(opt==3)printf("%d\n",find(root,x)+1);//+1
        if(opt==4)printf("%d\n",rank(root,x));
        if(opt==5)printf("%d\n",pre(root,x));
        if(opt==6)printf("%d\n",suc(root,x));
    }
    return 0;
}

【fhq-treap】可分裂合并的treap

真正的范浩强treap其实并不仅仅如此,这里使用这个名字只是为了方便。

功能:可分裂合并的treap,通过split和merge两个操作可以实现平衡树的所有功能(可以取代splay)。

(只有单点操作时仍然建议使用普通treap,fhq-treap步骤多所以常数大)

操作:

1.合并(merge):按照a左b右合并两棵平衡树,对两个树根比较堆权,将较小者放在上面后继续递归合并。

2.分裂(split):将平衡树按排名分裂成k和n-k两棵平衡树,通过判断当前根属于左树或右树后递归进行,传参得到最后的a和b。

3.查找区间:对于区间[a,b],将平衡树分裂成三部分,查询后合并。

4.线性建树:少用,做法是对最右一列维护栈,每次插入到右下角(栈顶),通过小型旋转维护堆性质并将栈顶相应弹出,最后记得t[0].r=0。

细节:

1.必须保证全过程不要影响到t[0]的值,t[0]的初始值也对全过程没有影响

2.平衡树的上传必须考虑本身

例题和模板:【BZOJ】1251: 序列终结者

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=100010;
struct tree{int l,r,rnd,num,mx,add,delta,sz;}t[maxn*2];
int st[maxn];
int n,m,root;
void down(int k){
    if(t[k].delta){
        swap(t[k].l,t[k].r);
        if(t[k].l)t[t[k].l].delta^=1;
        if(t[k].r)t[t[k].r].delta^=1;
        t[k].delta=0;
    }
    if(t[k].add){
        int p=t[k].add;
        if(t[k].l)t[t[k].l].add+=p,t[t[k].l].mx+=p,t[t[k].l].num+=p;
        if(t[k].r)t[t[k].r].add+=p,t[t[k].r].mx+=p,t[t[k].r].num+=p;//keep 0->0!!!
        t[k].add=0;
    }
}
int max(int a,int b){return a<b?b:a;}
void up(int k){//different from sgt!
    t[k].mx=max(t[k].num,max(t[t[k].l].mx,t[t[k].r].mx));
    t[k].sz=1+t[t[k].l].sz+t[t[k].r].sz;
}
void dfs(int k){
    if(!k)return;
    dfs(t[k].l);
    dfs(t[k].r);
    up(k);
}
void build(){
    int top=0;
    for(int i=1;i<=n;i++){
        t[i]=(tree){0,0,rand(),0,0,0,0,1};
        while(top&&t[st[top]].rnd>t[i].rnd){
            t[st[top]].r=t[i].l;
            t[i].l=st[top--];
        }
        t[st[top]].r=i;
        st[++top]=i;
    }
    dfs(st[1]);
    t[0].r=0;
    t[0].mx=-0x3f3f3f3f;//make 0 no influence
    root=st[1];
}
int merge(int a,int b){
    if(!a||!b)return a^b;
    if(t[a].rnd<t[b].rnd){
        down(a);
        t[a].r=merge(t[a].r,b);
        up(a);
        return a;
    }
    else{
        down(b);
        t[b].l=merge(a,t[b].l);
        up(b);
        return b;
    }
}
void split(int k,int &l,int &r,int x){
    if(!k)return void(l=r=0);
    down(k);
    if(x<t[t[k].l].sz+1){
        r=k;
        split(t[k].l,l,t[k].l,x);
    }
    else{
        l=k;
        split(t[k].r,t[k].r,r,x-t[t[k].l].sz-1);
    }
    up(k);
}
void plus(int l,int r,int x){
    int a,b,c;
    split(root,b,c,r);
    split(b,a,b,l-1);
    t[b].add+=x;t[b].mx+=x;t[b].num+=x;
    root=merge(a,b);root=merge(root,c);
}
void turn(int l,int r){
    int a,b,c;
    split(root,b,c,r);split(b,a,b,l-1);
    t[b].delta^=1;
    root=merge(a,b);root=merge(root,c);
}
int ask(int l,int r){
    int a,b,c,ans;
    split(root,b,c,r);split(b,a,b,l-1);
    ans=t[b].mx;
    root=merge(a,b);root=merge(root,c);
    return ans;
}
int main(){
    srand(233);
    scanf("%d%d",&n,&m);
    build();
    for(int i=1;i<=m;i++){
        int k,l,r,x;
        scanf("%d%d%d",&k,&l,&r);
        if(l>r)continue;
        if(k==1){
            scanf("%d",&x);
            plus(l,r,x);
        }
        else if(k==2)turn(l,r);
        else printf("%d\n",ask(l,r));
    }
    return 0;
}

时间: 2024-10-19 02:24:41

【专题】平衡树的相关文章

平衡树初阶——AVL平衡二叉查找树+三大平衡树(Treap + Splay + SBT)模板【超详解】

平衡树初阶——AVL平衡二叉查找树 一.什么是二叉树 1. 什么是树. 计算机科学里面的树本质是一个树状图.树首先是一个有向无环图,由根节点指向子结点.但是不严格的说,我们也研究无向树.所谓无向树就是将有向树的所有边看成无向边形成的树状图.树是一种递归的数据结构,所以我们研究树也是按照递归的方式去研究的. 2.什么是二叉树. 我们给出二叉树的递归定义如下: (1)空树是一个二叉树. (2)单个节点是一个二叉树. (3)如果一棵树中,以它的左右子节点为根形成的子树都是二叉树,那么这棵树本身也是二叉

关于平衡树的一些总结

平衡树是个大专题啊qwq..最近也学了一些很有用的平衡树,写个总结吧.. 一.splay 学的第一个平衡树,复习一下.. splay是一个功能很强大的二叉搜索树.其实讲道理splay并不算平衡树吧,因为它并没有任何关于树高的限制.splay的原理就是,每次插入或查询一个结点,就把它旋转到根结点,这样与搜索引擎的原理类似,查询次数较多的结点就能更靠近根.splay并不能保证每次操作严格复杂度都是O(logn),但是每次操作的均摊复杂度确实可以是O(log)..然而我也不知道为什么..不过splay

二叉树,平衡树,红黑树,B~/B+树汇总

二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将会下降很快,比如二叉树 1.二叉查找树

splay专题复习——bzoj 3224 &amp; 1862 &amp; 1503 题解

[前言]快要省选二试了.上次去被虐出翔了~~这次即便是打酱油,也要打出风采!于是暂停新东西的学习,然后开始复习以前的知识,为骗分做准备.PS:区间翻转的暂时跳过,就算学了也来不及巩固了. [BZOJ3224] 3224: Tyvj 1728 普通平衡树 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 1477  Solved: 570 Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 1. 插入

小结:平衡树

概要: 平衡树大概是最常用的高级数据结构了,而treap用来进行一般的信息维护,splay用来进行高级的信息维护(比如区间操作.lct等)(map.set党自重QAQ). 技巧及注意: 细节十分多. treap中如果设小根堆的话(最好设小根堆),null的重量要设置为inf. 平衡树中的重复元素两种处理方法,看情况使用. 平衡树中的rank和select要和上一种注意事项结合起来,多想想. splay中如果写lct要特判根.treap很多地方要传指针引用,splay完全不必.写好后最好手造几组h

【团购巨划算】韩立刚老师门徒级学习专题,只此一次的超大优惠福利

Q:韩立刚老师是谁? A:韩老师是51CTO金牌讲师(最高级别),也是微软最有价值专家MVP.微软企业护航专家.<计算机网络原理>一书作者 讲师主页:http://edu.51cto.com/lecturer/400469.html Q:门徒级学习专题是什么? A:韩立刚老师门徒级课程专题(Windows Server+网络安全+数据库) 韩老师从2013年至今,根据企业对IT运维人才的技术要求,录制视频教程49 门,时长达581小时50分钟.旨在从0起点培养企业高端IT人才,让你在企业IT部

bzoj3224 Tyvj 1728 普通平衡树

Description 您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作: 1. 插入x数 2. 删除x数(若有多个相同的数,因只删除一个) 3. 查询x数的排名(若有多个相同的数,因输出最小的排名) 4. 查询排名为x的数 5. 求x的前驱(前驱定义为小于x,且最大的数) 6. 求x的后继(后继定义为大于x,且最小的数) Input 第一行为n,表示操作的个数,下面n行每行有两个数opt和x,opt表示操作的序号(1<=opt<=6) Output 对于操作3,4,

c指针-专题

六---指针 内存和地址怎么理解呢? 机器中有一些位置,每一个位置被称为[字节]/byte,许多现代机器上,每个字节包含8个位.更大内存单位[字],通常包含2个或4个字节组成. 一个字包含4个字节,它的地址是什么? 他仍然只有一个地址,是最左边还是最右边的那个字节的位置,取决于机器. 机器事实-关于整型的起始位置: 在要求边界对齐(boundaryalignment)的机器上,整型存储的起始位置只能是某些特定的字节,通常是2或4的倍数. 变量名和地址关系? 所有高级语言的特性之一,就是通过名字而

无线安全专题_破解篇03--打造个人字典

上一篇讲解了如何通过Kali破解Pin码,今天继续无线安全专题破解篇的第三讲:打造个人字典.通过第一课,我们知道想要破解WPA加密,需要一个强大的字典.字典的强大直接决定了破解的可能性,废话不多说,咱们就学习一下怎么使用kali中的工具生打造个人字典.  一.crunsh工具介绍 今天主要说的是crunsh这款工具,专门用来生成字典. 命令参数: -b              #体积大小,比如-b 20mib 或者 -b 20kib -c              #密码个数(行数),比如80