卷积神经网络系列之softmax,softmax loss和cross entropy的讲解

我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cross entropy了解吗?相信很多人不一定清楚。虽然网上的资料很多,但是质量参差不齐,常常看得眼花缭乱。为了让大家少走弯路,特地整理了下这些知识点的来龙去脉,希望不仅帮助自己巩固知识,也能帮到他人理解这些内容。

这一篇主要介绍全连接层和损失层的内容,算是网络里面比较基础的一块内容。先理清下从全连接层到损失层之间的计算。来看下面这张图,来自参考资料1(自己实在懒得画图了)。

这张图的等号左边部分就是全连接层做的事,W是全连接层的参数,我们也称为权值,X是全连接层的输入,也就是特征。从图上可以看出特征X是N*1的向量,这是怎么得到的呢?这个特征就是由全连接层前面多个卷积层和池化层处理后得到的,假设全连接层前面连接的是一个卷积层,这个卷积层的输出是100个特征(也就是我们常说的feature map的channel为100),每个特征的大小是4*4,那么在将这些特征输入给全连接层之前会将这些特征flat成N*1的向量(这个时候N就是100*4*4=1600)。解释完X,再来看W,W是全连接层的参数,是个T*N的矩阵,这个N和X的N对应,T表示类别数,比如你是7分类,那么T就是7。我们所说的训练一个网络,对于全连接层而言就是寻找最合适的W矩阵。因此全连接层就是执行WX得到一个T*1的向量(也就是图中的logits[T*1]),这个向量里面的每个数都没有大小限制的,也就是从负无穷大到正无穷大。然后如果你是多分类问题,一般会在全连接层后面接一个softmax层,这个softmax的输入是T*1的向量,输出也是T*1的向量(也就是图中的prob[T*1],这个向量的每个值表示这个样本属于每个类的概率),只不过输出的向量的每个值的大小范围为0到1。

现在你知道softmax的输出向量是什么意思了,就是概率,该样本属于各个类的概率!

那么softmax执行了什么操作可以得到0到1的概率呢?先来看看softmax的公式(以前自己看这些内容时候对公式也很反感,不过静下心来看就好了):

公式非常简单,前面说过softmax的输入是WX,假设模型的输入样本是I,讨论一个3分类问题(类别用1,2,3表示),样本I的真实类别是2,那么这个样本I经过网络所有层到达softmax层之前就得到了WX,也就是说WX是一个3*1的向量,那么上面公式中的aj就表示这个3*1的向量中的第j个值(最后会得到S1,S2,S3);而分母中的ak则表示3*1的向量中的3个值,所以会有个求和符号(这里求和是k从1到T,T和上面图中的T是对应相等的,也就是类别数的意思,j的范围也是1到T)。因为e^x恒大于0,所以分子永远是正数,分母又是多个正数的和,所以分母也肯定是正数,因此Sj是正数,而且范围是(0,1)。如果现在不是在训练模型,而是在测试模型,那么当一个样本经过softmax层并输出一个T*1的向量时,就会取这个向量中值最大的那个数的index作为这个样本的预测标签。

因此我们训练全连接层的W的目标就是使得其输出的WX在经过softmax层计算后其对应于真实标签的预测概率要最高。

举个例子:假设你的WX=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。

————————————————————————华丽的分割线———————————————————————-

弄懂了softmax,就要来说说softmax loss了。 
那softmax loss是什么意思呢?如下:

首先L是损失。Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。那么哪个位置的值是1呢?答案是真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:

当然此时要限定j是指向当前样本的真实标签。

来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.2,0.3,0.4,0.6,0.5],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.2,0.3,0.4,0.1,0.5],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别5),对应损失L=-log(0.1)。那么假设p=[0.2,0.3,0.4,0.3,0.5],这个预测结果虽然也错了,但是没有前面那个那么离谱,对应的损失L=-log(0.3)。我们知道log函数在输入小于1的时候是个负数,而且log函数是递增函数,所以-log(0.6) < -log(0.3) < -log(0.1)。简单讲就是你预测错比预测对的损失要大,预测错得离谱比预测错得轻微的损失要大。

———————————————————————-华丽的分割线—————————————————————————-

理清了softmax loss,就可以来看看cross entropy了。 
corss entropy是交叉熵的意思,它的公式如下:

是不是觉得和softmax loss的公式很像。当cross entropy的输入P是softmax的输出时,cross entropy等于softmax loss。Pj是输入的概率向量P的第j个值,所以如果你的概率是通过softmax公式得到的,那么cross entropy就是softmax loss。这是我自己的理解,如果有误请纠正。

来自:http://blog.csdn.net/u014380165/article/details/77284921#comments

原文地址:https://www.cnblogs.com/nopassword/p/8192474.html

时间: 2024-11-03 03:47:01

卷积神经网络系列之softmax,softmax loss和cross entropy的讲解的相关文章

Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn

人脸检测及识别python实现系列(4)——卷积神经网络(CNN)入门

人脸检测及识别python实现系列(4)--卷积神经网络(CNN)入门 上篇博文我们准备好了2000张训练数据,接下来的几节我们将详细讲述如何利用这些数据训练我们的识别模型.前面说过,原博文给出的训练程序使用的是keras库,对我的机器来说就是tensorflow版的keras.训练程序建立了一个包含4个卷积层的神经网络(CNN),程序利用这个网络训练我的人脸识别模型,并将最终训练结果保存到硬盘上.在我们实际动手操练之前我们必须先弄明白一个问题--什么是卷积神经网络(CNN)? CNN(Conv

数据挖掘系列(9)——卷积神经网络算法的一个实现

前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献.目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化. 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法.CNN在手写体

【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇

提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST.  f(x, y, z) = (x + y) * z (3.00 + 1.00) * -2.00 =

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解

DeepLearning tutorial(4)CNN卷积神经网络原理简介+代码详解 @author:wepon @blog:http://blog.csdn.net/u012162613/article/details/43225445 本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Convolutional Neural Networks (LeNet).经详细注释的代码和原始代码:放在我的github地址上,可下载. 一.CNN卷积神经网络原理

卷积神经网络_(2)_分类与回归_几类经典网络简介

1.经典神经网络有:2012年提出的AlexNet和2014年提出的VGGNet,结构图分别如下: 2.分类与回归: (1)分类(classfication):就是经过经过一系列的卷积层和池化层之后,再经过全连接层得到样本属于每个类的得分,再用比如softmax分类其对其进行分类: (2)回归(regression):相当于用一个矩形框来框住要识别的物体,即localization; 如下: 这里,回归用了拟合的方法,即给定输入中物体的位置(x,yw,h),再用卷积网络的输出(x',y',w',

卷积神经网络大总结

#Deep Learning回顾#之2006年的Science Paper 大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTRL这些概念.究其原因,主要是神经网络很难解决训练的问题,比如梯度消失.当时的神经网络研究进入一个低潮期,不过Hinton老人家坚持下来了. 功夫不负有心人,2006年Hinton和学生发表了利用RBM编码的深层神经网络的Sc

TensorFlow框架(4)之CNN卷积神经网络详解

1. 卷积神经网络 1.1 多层前馈神经网络 多层前馈神经网络是指在多层的神经网络中,每层神经元与下一层神经元完全互连,神经元之间不存在同层连接,也不存在跨层连接的情况,如图 11所示. 图 11 对于上图中隐藏层的第j个神经元的输出可以表示为: 其中,f是激活函数,bj为每个神经元的偏置. 1.2 卷积神经网络 1.2.1 网络结构 卷积神经网络与多层前馈神经网络的结构不一样,其每层神经元与下一层神经元不是全互连,而是部分连接,即每层神经层中只有部分的神经元与下一层神经元有连接,但是神经元之间

深度学习之卷积神经网络CNN及tensorflow代码实现示例

一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连的.当输入层的特征维度变得很高时,这时全连接网络需要训练的参数就会增大很多,计算速度就会变得很慢,例如一张黑白的 28×28 的手写数字图片,输入层的神经元就有784个,如下图所示: 若在中间只使用一层隐藏层,参数 w 就有 784×15=11760 多个:若输入的是28×28 带有颜色的RGB格式的手写数字图片,输入神经元就有28×28×3=2352 个-- .这很容易看出使用全连接神经网络处理图像中的需要训