题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3555
Bomb
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)
Total Submission(s): 7716 Accepted Submission(s): 2702
Problem Description
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the time bomb. The number sequence of the time bomb counts from 1 to N. If the current number sequence includes the sub-sequence "49", the
power of the blast would add one point.
Now the counter-terrorist knows the number N. They want to know the final points of the power. Can you help them?
Input
The first line of input consists of an integer T (1 <= T <= 10000), indicating the number of test cases. For each test case, there will be an integer N (1 <= N <= 2^63-1) as the description.
The input terminates by end of file marker.
Output
For each test case, output an integer indicating the final points of the power.
Sample Input
3 1 50 500
Sample Output
0 1 15 Hint From 1 to 500, the numbers that include the sub-sequence "49" are "49","149","249","349","449","490","491","492","493","494","495","496","497","498","499", so the answer is 15.
Author
[email protected]
参考:http://blog.csdn.net/ecjtu_yuweiwei/article/details/11835209
- /*
- 题意:求1~N中含有数字49的个数 1 <= N <= 2^63-1
- 方法:数位DP
- dp[len][0] 代表长度为len不含49的方案数
- dp[len][1] 代表长度为len不含49但是以9开头的数字的方案数
- dp[len][2] 代表长度为len含有49的方案数
- 状态转移如下
- dp[i][0] = dp[i-1][0] * 10 - dp[i-1][1]; //如果不含49且,在前面可以填上0-9 但是要减去dp[i-1][1] 因为4会和9构成49
- dp[i][1] = dp[i-1][0]; //这个直接在不含49的数上填个9就行了
- dp[i][2] = dp[i-1][2] * 10 + dp[i-1][1]; //已经含有49的数可以填0-9,或者9开头的填4
- 写完动态转移方程后就把N从高位到低位一个一个统计了
- 在统计到某一位的时候,加上 dp[i-1][2] * digit[i] 是显然没问题,这是因为这一位可以填【0,(digit[i]-1)】这个区间的数
- 若这一位之前挨着49,那么加上 dp[i-1][0] * digit[i] 也是显然OK。
- 若这一位之前没有挨着49,但是digit[i]比4大,那么当这一位填比digit[i]小的4的时候,就得加上dp[i-1][1](以9开头的数字的方案数)
- */
PS:
#include <iostream> #include <stdio.h> #include <string.h> #include <string> #include <cstdio> #include <cmath> typedef long long ll; using namespace std; ll dp[22][4]; ll digit[22]; void sove() { dp[0][0]=1; for(int i=1;i<21;i++) { dp[i][0]=dp[i-1][0]*10-dp[i-1][1]; dp[i][1]=dp[i-1][0]; dp[i][2]=dp[i-1][2]*10+dp[i-1][1]; } } int main() { ll T,n; cin>>T; sove(); while(T--) { scanf("%I64d",&n); memset(digit,0,sizeof(digit)); int len=0; while(n) { digit[++len]=n%10; n/=10; } int flag=0,last=0; ll cnt=0; for(int i=len;i>=1;i--) { cnt+=dp[i-1][2]*digit[i]; if(flag) cnt+=dp[i-1][0]*digit[i]; if(!flag&&digit[i]>4) cnt+=dp[i-1][1]; if(last==4&&digit[i]==9) flag=1; last=digit[i]; } if(flag)cnt++; printf("%I64d\n",cnt); } return 0; }