UVA202循环小数Repeating Decimals

Repeating Decimals

The decimal expansion of the fraction 1/33 is , where the is used to indicate that the cycle 03 repeats indefinitely with no intervening digits. In fact, the decimal expansion of every rational number (fraction) has a repeating cycle as opposed to decimal expansions of irrational numbers, which have no such repeating cycles.

Examples of decimal expansions of rational numbers and their repeating cycles are shown below. Here, we use parentheses to enclose the repeating cycle rather than place a bar over the cycle.

Write a program that reads numerators and denominators of fractions and determines their repeating cycles.

For the purposes of this problem, define a repeating cycle of a fraction to be the first minimal length string of digits to the right of the decimal that repeats indefinitely with no intervening digits. Thus for example, the repeating cycle of the fraction 1/250 is 0, which begins at position 4 (as opposed to 0 which begins at positions 1 or 2 and as opposed to 00 which begins at positions 1 or 4).

Input

Each line of the input file consists of an integer numerator, which is nonnegative, followed by an integer denominator, which is positive. None of the input integers exceeds 3000. End-of-file indicates the end of input.

Output

For each line of input, print the fraction, its decimal expansion through the first occurrence of the cycle to the right of the decimal or 50 decimal places (whichever comes first), and the length of the entire repeating cycle.

In writing the decimal expansion, enclose the repeating cycle in parentheses when possible. If the entire repeating cycle does not occur within the first 50 places, place a left parenthesis where the cycle begins - it will begin within the first 50 places - and place ``...)" after the 50th digit.

Print a blank line after every test case.

Sample Input

76 25
5 43
1 397

Sample Output

76/25 = 3.04(0)
1 = number of digits in repeating cycle

5/43 = 0.(116279069767441860465)
21 = number of digits in repeating cycle

1/397 = 0.(00251889168765743073047858942065491183879093198992...)
99 = number of digits in repeating cycle

题意:

当a除以b.有一个结论:正整数a/整数b的结果,小数部分总是有限小数或无限循环小数。本题:如果有循环小数,用()标记出来,同时计算出循环小数的长度;如果没有,结尾用(0)表示

解题思路:

1. 鸽巢原理的应用(或者抽屉原则)即:桌上有十个苹果,要把这十个苹果放到九个抽屉里,那么每个抽屉代表一个集合,每一个苹果可以代表一个元素,假如有n+1个元素放到n个集合中去,其中必定至少有一个集合里有两个元素。

应用在本题中,a/b,那么根据模运算,可以知道,余数必定在0~b-1范围,那么当运算第b+1次时,必定重复一个余数(根据鸽巢原理)。当找到开始重复的余数时,即可找到循环节。

2. 用q[MAX]记录每次运算的商,r[MAX]记录每次运算的余数,同时用设置标记数组vist[MAX],标记余数是否出现过

比如5/7 q[0]~q[6]数组依次0 7 1 4 2 8 5; r[0]~r[6]依次为5 5 1 3 2 6 4

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 using namespace std;
 5
 6 const int MAX = 3000;
 7 int y[MAX];  //数组 存储 余数
 8 int s[MAX];  //数组 存储 商
 9 int bj[MAX];  //标记 数字i 是否出现
10
11
12 int main()
13 {
14     int a, b;
15
16
17     while (cin >> a >> b)
18     {
19         memset(y, 0, sizeof(y));
20         memset(s, 0, sizeof(s));
21         memset(bj, 0, sizeof(bj));
22
23         int a_temp = a;             //保存a的值
24         int cnt = 0;                //
25         s[cnt++] = a / b;              //存ab相除的 商(整数部分)
26         a = a%b;                    //求ab相除的余数
27         while (a&&!bj[a])   //a不为0 &&  a在标记数组没有出现过
28         {
29             bj[a] = 1;              //标记 余数a
30             s[cnt] = 10 * a / b;        //循环存 商
31             y[cnt] = a;            //循环 存 余数
32             a = 10 * a%b;
33             cnt++;              //最后一次循环时,cnt已经多加了一次。
34         }
35         cout << a_temp << "/" << b << "=" << s[0] << ".";
36
37         if (a == 0)
38         {
39             for (int i = 1; i<cnt; i++)
40                 cout << s[i];
41             cout << "(0)" << endl;
42             cout << "1=number of digits in repeating cycle" << endl;
43
44         }
45         else
46         {
47             int pos;
48             for (int i = 1; i <= 50 && i<cnt; i++)
49             {
50                 if (y[i] == a)      //找到数值a在余数数组的位置
51                 {
52                     cout << "(";
53                     pos = i;
54                 }
55                 cout << s[i];    //循环输出 循环部分的 数字
56             }
57             if (cnt>50)
58                 cout << "....)" << endl;
59             else
60                 cout << ")" << endl;
61             cout << cnt - pos << "=number of digits in repeating cycle" << endl;
62
63         }
64
65     }
66     getchar();
67     getchar();
68     return 0;
69 }
时间: 2024-10-08 01:40:26

UVA202循环小数Repeating Decimals的相关文章

UVA202 UVALive5141 Repeating Decimals

问题链接:UVA202 UVALive5141 Repeating Decimals.基础训练级的问题,用C语言编写程序. 问题简述:输入两个整数numerator和denominator,分别为分子和分母.0≤分子,1≤分母≤3000.输出a/b的循环小数表示以及循环节长度.如果循环周期大于50,只显示50位,之后的全部用"..."表示. 解题思路:先取出整数部分(numerator/denominator的商),然后用余数(numerator%denominator的余数)计算小数

Repeating Decimals (计算循环小数)

//计算循环小数,并找出循环节以及循环节的长度,最后输出时若循环节大于50最后输出省略号. //求循环小数,记录被除数,若被除数相同了则证明循环了. //注意:即使是循环小数,但可能并不是从第一位小数开始循环 #include <iostream> #include<cstdio> #include<cstring> using namespace std; int rm[1010]; int vis[1000010]; int rec[1000010]; int ma

UVa202 Repeating Decimals

#include <stdio.h>#include <map>using namespace std; int main(){    int a, b, c, q, r, places;    map<int, int> rmap;    pair<map<int, int>::iterator, bool> pr;    int qarr[50];    while (scanf("%d %d", &a, &

UVa 202 Repeating Decimals

计算循环小数的循环节 输入整数a和b(0<=a<=3000,1<=b<=3000),输出a/b的循环小数表示以及循环节长度. 例如,a=5,b=43,小数表示为0.(116279069767441860465),循环字节长度为21 可以用数组储存数字,模拟竖式除法来解决. 附AC代码: 1 #include<iostream> 2 #include<cstring> 3 using namespace std; 4 5 const int MAX=3050;

UVa 202 Repeating Decimals【模拟】

题意:输入整数a和b,输出a/b的循环小数以及循环节的长度 学习的这一篇 http://blog.csdn.net/mobius_strip/article/details/39870555 因为n%m的余数只可能是0到m-1中的一个,根据抽屉原理,当计算m+1次时至少存在一个余数相同 发现看了题解理解起来也好困难啊, 后来手动画了一下5/7的竖式除法的式子,,理解一些了 1 #include<iostream> 2 #include<cstdio> 3 #include<c

Repeating Decimals UVA - 202

1 The decimal expansion of the fraction 1/33 is 0.03, where the 03 is used to indicate that the cycle 03 2 repeats indefinitely with no intervening digits. In fact, the decimal expansion of every rational number 3 (fraction) has a repeating cycle as

UVa 202 Repeating Decimals 题解

The decimal expansion of the fraction 1/33 is 0.03, where the 03 is used to indicate that the cycle 03 repeats inde?nitely with no intervening digits. In fact, the decimal expansion of every rational number (fraction) has a repeating cycle as opposed

uva 202 Repeating Decimals 模拟

弱校连萌题目链接:http://acm.bnu.edu.cn/v3/contest_show.php?cid=5772#problem/G 需要先想到出现循环节意味着出现了以前出现过的余数 然后就自己手写一个大数除法 后来看别人博客发现其实不用STL也可以 检查余数是否出现过可以是常数级的 因为除数不大于3000 所以开一个3010的数组来存余数标记即可 当然我还是用的map 因为复杂度实在太松了 这题烦得很 注意“输出前50位”是指所有数字加起来50位... 不是小数点后50位...(哭晕在厕

202 - Repeating Decimals

#include <stdio.h> #include <string.h> using namespace std; int isExist(int* list, int size, int val); int main(){ int m, n, divided[5000], count, idx, flag; char decimal[5000]; while(scanf("%d%d", &m, &n) != EOF){ count = 0,