建立堆 堆排序 堆内某个元素值变大(优先级提升)后调整堆 插入元素到堆尾 原文地址:https://www.cnblogs.com/hellcat/p/9255337.html 时间: 2024-10-07 20:12:35
梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步长控制参数alpha.梯度下降法通常用一个三维图来展示,迭代过程就好像在不断地下坡,最终到达坡底.为了更形象地理解,也为了和牛顿法比较,这里我用一个二维图来表示: 懒得画图了直接用这个展示一下.在二维图中,梯度就相当于凸函数切线的斜率,横坐标就是每次迭代的参数,纵坐标是目标函数的取值.每次迭代的过程
概述 通俗来讲,最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值. 重要的假设是所有采样满足独立同分布. 求解模型参数过程 假如我们有一组连续变量的采样值(x1,x2,-,xn),我们知道这组数据服从正态分布,标准差已知.请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大? P(Data | M) = ? 根据公式 可得: 对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+-+xn)/n 由上可知最大似然估计的一般求解过程: (1) 写出似然函数
本文索引目录: 一.动态规划的基本思想 二.数字三角形.最大子段和(PTA)递归方程 三.一道区间动态规划题点拨升华动态规划思想 四.结对编程情况 一.动态规划的基本思想: 1.1 基本概念: 动态规划算法简单说,利用拆解问题思想,定义问题状态和状态之间的关系,使得问题能够以递推或者是分治的方式去解决. 动态规划算法的基本思想与分治法很相似,将待求解的问题分解为若干个子问题,前一子问题的解,为后一子问题的求解所依赖.在求解任一子问题时,列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解
参考博客:基于python的七种经典排序算法 常用排序算法总结(一) 序前传 - 树与二叉树 树是一种很常见的非线性的数据结构,称为树形结构,简称树.所谓数据结构就是一组数据的集合连同它们的储存关系和对它们的操作方法.树形结构就像自然界的一颗树的构造一样,有一个根和若干个树枝和树叶.根或主干是第一层的,从主干长出的分枝是第二层的,一层一层直到最后,末端的没有分支的结点叫做叶子,所以树形结构是一个层次结构.在<数据结构>中,则用人类的血统关系来命名,一个结点的分枝叫做该结点的"
作为一名开发人员,在日常的工作中会难以避免地接触到数据库,无论是基于文件的 sqlite 还是工程上使用非常广泛的 MySQL.PostgreSQL,但是一直以来也没有对数据库有一个非常清晰并且成体系的认知,所以最近两个月的时间看了几本数据库相关的书籍并且阅读了 MySQL 的官方文档,希望对各位了解数据库的.不了解数据库的有所帮助. 本文中对于数据库的介绍以及研究都是在 MySQL 上进行的,如果涉及到了其他数据库的内容或者实现会在文中单独指出. 数据库的定义 很多开发者在最开始时其实都对数据
重新学习Mysql数据库2:『浅入浅出』MySQL 和 InnoDB 作为一名开发人员,在日常的工作中会难以避免地接触到数据库,无论是基于文件的 sqlite 还是工程上使用非常广泛的 MySQL.PostgreSQL,但是一直以来也没有对数据库有一个非常清晰并且成体系的认知,所以最近两个月的时间看了几本数据库相关的书籍并且阅读了 MySQL 的官方文档,希望对各位了解数据库的.不了解数据库的有所帮助. 本文中对于数据库的介绍以及研究都是在 MySQL 上进行的,如果涉及到了其他数据库的内容或者
本文的图片材料多数来自\(\mathrm{hihocoder}\)中详尽的\(SAM\)介绍,文字总结为原创内容. 确定性有限状态自动机 DFA 首先我们要定义确定性有限状态自动机\(\mathrm{DFA}\),一个有限状态自动机可以用一个五元组\((\mathrm{S},\Sigma,\mathrm{st},\mathrm{end},\delta)\)表示,他们的含义如下: \(1.\) \(\mathrm{S}\) 代表自动机的状态集 \(2.\) \(\Sigma\) 代表字符集,也称字