卷积神经网络学习(二)

一、基础知识(一)

  filter:

      

  padding:在图像卷积操作之前,沿着图像边缘用0进行图像填充。padding会影响输出图像大小。

  stride(卷积步长):卷积步长是指过滤器在图像上滑动的距离

  input: n*n, filter: f*f, stride: s, padding: p

  output:, ? ?表示向下取整



单层卷积网络:   

ReLU(整流线性单位)——与Sigmoid函数不同的是,最近的网络更喜欢使用ReLu激活函数来处理隐藏层。该函数定义为:

当X>0时,函数的输出值为X;当X<=0时,输出值为0。函数图如下图所示:

使用ReLU函数的最主要的好处是对于大于0的所有输入来说,它都有一个不变的导数值。常数导数值有助于网络训练进行得更快。

  在矩阵上加入偏差b1,然后对加入偏差的矩阵做非线性的Relu变换,得到一个新的4*4矩阵,这就是单层卷积网络的完整计算过程。用公式表示:

 

其中输入图像为a[0],过滤器用w[1]表示,对图像进行线性变化并加入偏差得到矩阵z[1],a[1]是应用Relu激活后的结果。

描述卷积神经网络的一些符号标识:

  输出图像的通道数就是过滤器的个数。



卷积神经网络层的类型:

  • 卷积层(convolution,conv)
  • 池化层(pooling,pool)
  • 全连接层(Fully connected,FC)

1.池化层

最大池化(Max pooling)

最大池化思想很简单,以下图为例,把4*4的图像分割成4个不同的区域,然后输出每个区域的最大值,这就是最大池化所做的事情。其实这里我们选择了2*2的过滤器,步长为2。在一幅真正的图像中提取最大值可能意味着提取了某些特定特征,比如垂直边缘、一只眼睛等等。

平均池化和最大池化唯一的不同是,它计算的是区域内的平均值而最大池化计算的是最大值。在日常应用使用最多的还是最大池化。平均池化和最大池化唯一的不同是,它计算的是区域内的平均值而最大池化计算的是最大值。在日常应用使用最多的还是最大池化。

平均池化和最大池化唯一的不同是,它计算的是区域内的平均值而最大池化计算的是最大值。在日常应用使用最多的还是最大池化。

池化的超参数:步长、过滤器大小、池化类型最大池化or平均池化

原文地址:https://www.cnblogs.com/Chians-DW/p/9211272.html

时间: 2024-10-09 21:00:49

卷积神经网络学习(二)的相关文章

CNN卷积神经网络学习笔记2:网络结构

在上篇笔记<CNN卷积神经网络学习笔记1:背景介绍>中已经介绍过CNN的结构,这篇笔记中,通过一个简单的CNN的例子,梳理一下CNN的网络结构的细节. 以下是一个6层的CNN网络,这个简单的CNN网络是DeepLearning Toolbox里面CNN的一个例子,后面要通过DeepLearning Toolbox中CNN的代码来进一步理解CNN的整个过程.我们输入的是1张大小为28*28的图片. 需要注意的有: 1,这里输入的是一张图片,如果我们输入了50张图片,那么下图中的每一个方框(代表一

CNN卷积神经网络学习笔记3:权值更新公式推导

在上篇<CNN卷积神经网络学习笔记2:网络结构>中,已经介绍了CNN的网络结构的详细构成,我们已经可以初始化一个自己的CNN网络了,接下来就是要用训练得到一个确定的CNN的模型,也就是确定CNN的参数. CNN本质上就是人工神经网络的一种,只是在前几层的处理上有所不同,我们可以把卷积核看成是人工神经网络里的权值W,而采样层实质上也是一种卷积运算.所以可以基于人工神经网络的权值更新的方法来推导CNN里的权值更新公式.人工神经网络里是用反向传播算法将误差层层回传,利用梯度下降法更新每一层的权值,C

Convolutional Neural Networks卷积神经网络(二)

转自http://blog.csdn.net/zouxy09/article/details/8781543 CNNs是第一个真正成功训练多层网络结构的学习算法.它利用空间关系减少需要学习的参数数目以提高一般前向BP算法的训练性能.在CNN中,图像的一小部分(局部感受区域)作为层级结构的最低层的输入,信息再依次传输到不同的层,每层通过一个数字滤波器去获得观测数据的最显著的特征.这个方法能够获取对平移,缩放和旋转不变的观测数据的显著特征,因为图像的局部感受区域允许神经元或者处理单元可以访问到最基础

卷积神经网络学习笔记与心得(3)卷积

数字图像是一个二维的离散信号,对数字图像做卷积操作其实就是利用卷积核(卷积模板)在图像上滑动,将图像点上的像素灰度值与对应的卷积核上的数值相乘,然后将所有相乘后的值相加作为卷积核中间像素对应的图像上像素的灰度值. 从卷积的效果来看,在二维图像上进行卷积时,卷积核对所在区域上符合某种条件的像素赋予较多的权重,其他的像素赋予的权重较少,这可以看作是一种滤波行为,因此卷积神经网络的卷积核有时也被称为滤波器,卷积核所在区域被称为局部感知域.若局部感知域中存在像素符合加较大权重的条件,称这些像素具有某种特

CNN卷积神经网络学习笔记1:背景介绍

Convolutional Neural Network 卷积神经网络是基于人工神经网络提出的.人工神经网络模拟人的神经系统,由一定数量的神经元构成.在一个监督学习问题中,有一组训练数据(xi,yi),x是样本,y是label,把它们输入人工神经网络,会得到一个非线性的分类超平面hw,b(x),在这篇笔记中先梳理一下传统人工神经网络的基本概念,再基于传统人工神经网络简单介绍卷积神经网络. 1,神经元neuron 一个神经元是神经网络中的一个运算单元,它实质上就是一个函数.下图是一个神经元的示意图

卷积神经网络学习笔记与心得(2)数据集

机器学习领域有很多现成的数据集,它们由个人或组织制作.整理,且向外界公开下载,比如在字符识别领域有mnist数据集等,数据挖掘领域有Iris,Adult数据集等.这些数据集为相关技术研究者提供了很大的便捷,有了这些资源,研究者就可以把更多的精力放在模型的研究上,可以说这些数据集的制作整理者对推动数据挖掘和机器学习的发展做出了巨大的贡献. 不过,在不少情况下,这些数据集未必能满足我们的需求,这时就要我们自己制作数据集了.不得不说,这次的字符识别项目中制作数据集的经历着实让我感受到了那些数据整理者的

卷积神经网络学习笔记与心得(4)池化

图片经过卷积.激活后的结果一般带有大量原图信息. 上图中卷积核提取的是竖直方向上的连续像素,但是,被增强的像素只占了结果的1/3,对于多层网络,其余重要性较低的信息也被传入了下一层网络,造成了不必要的浪费,因此需要用池化对卷基层得到的结果做聚合统计.池化的理论基础是:图像相邻位置的像素是相关的,即使间隔一段尺寸对图像进行采样,得到的结果依旧能保持大部分信息.常用的池化方式有最大池化和均值池化.池化的另一个重要作用是为卷积神经网络带来一定的平移.旋转和透视不变性. 上图展示了池化如何为模型带来平移

个人卷积神经网络学习笔记(我的理解)

学习过程相当于使用一个滤波器,定义滤波器大小和深度步长,在原图像上滑动,滤波器上每一个深度的点对原图像上特征点响应的量化值都是不同的,响应过程是一个卷积过程,原图像如果是3 7*7(3是原来的depth),滤波器定义为10 3*3 stride=1则获得的输出为10 5*5,在学习过程中卷积层的大小会不断变小,所以针对高深度的可能会循环上千次的卷积神经网络,需要在每次输出的卷积层外加(size_of_fliter-1)的pad,来防止尺度缩减或者缩减过快的问题,针对我列举出的数据,训练一次之后的

吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(二)

经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络.网络深度逐渐增加,训练的参数数量也骤增.AlexNet大约6000万参数,VGG大约上亿参数. 从中我们可以学习到: 随着网络深度增加,模型的效果能够提升. 另外,VGG网络虽然很深,但是其结构比较规整.每经过一次池化层(过滤器大小为2,步长为2),图像的长度和宽度折半:每经过一次卷积层,输出数据的channel数量加倍,即卷积层中过滤器(filter)的数量. 残差网络(ResNet) 由于存在梯度消