Python之岭回归

实现:# -*- coding: UTF-8 -*-

import numpy as npfrom sklearn.linear_model import Ridge

__author__ = ‘zhen‘

X = 2 * np.random.rand(100, 1)y = 4 + 3 * X + np.random.randn(100, 1)# 岭回归ridge_reg = Ridge(alpha=1, solver=‘sag‘)ridge_reg.fit(X, y)print("="*50)print(ridge_reg.predict(1.5))print(ridge_reg.intercept_)print(ridge_reg.coef_)print("="*50)结果:
 

原文地址:https://www.cnblogs.com/yszd/p/9280623.html

时间: 2024-11-09 03:55:39

Python之岭回归的相关文章

用Python实现岭回归算法与Lasso回归算法并处理Iris数据集

在介绍岭回归算法与Lasso回归算法之前,先要回顾一下线性回归算法.根据线性回归模型的参数估计公式可知可知,得到的前提是矩阵可逆.换句话说就是样本各个特征(自变量)之间线性无关.然而在实际问题中,常常会出现特征之间出现多重共线性的情况,使得行列式的值接近于0,最终造成回归系数无解或者无意义. 为了解决这个问题,岭回归算法的方法是在线性回归模型的目标函数之上添加一个l2的正则项,进而使得模型的回归系数有解.具体的岭回归目标函数可表示为如下: 在Python中,岭回归算法的实现方法如下. 在Pyth

python Ridge 回归(岭回归)的原理及应用

岭回归的原理: 首先要了解最小二乘法的回归原理 设有多重线性回归模型   y=Xβ+ε  ,参数β的最小二乘估计为 当自变量间存在多重共线性,|X'X|≈0时,设想|X'X|给加上一个正常数矩阵(k>0) 那么|X'X|+kI 接近奇异的程度就会比接近奇异的程度小得多.考虑到变量的量纲问题, 先要对数据标准化,标准化后的设计矩阵仍用X表示,定义称为的岭回归估计,其中, k称为岭参数.由于假设X已经标准化,所以就是自变量样本相关阵.y可以标准化也可以未标准化, 如果y也经过标准化,那么计算的实际是

机器学习之线性回归、岭回归、Lasso回归

1.回归算法分类算法的目标值是标称型数据,而回归的目标变量是连续型数据,主要包括线性回归,岭回归,lasso回归,前向逐步回归. 2.线性回归线性回归主要用于处理线性数据,结果易于理解,计算复杂度不高,但是处理不了非线性数据.线性回归用最适直线(回归线)去建立因变量Y和一个或多个自变量X之间的关系.可以用公式来表示:Y = wX + b.其中w为权重,也称为回归系数,b为偏置顶. 3.理解线性回归线性回归从高中数学就接触过了,不过我们主要学习二维形式的线性回归,即y = kx + b.其中斜率k

机器学习-正则化(岭回归、lasso)和前向逐步回归

机器学习-正则化(岭回归.lasso)和前向逐步回归 本文代码均来自于<机器学习实战> 这三种要处理的是同样的问题,也就是数据的特征数量大于样本数量的情况.这个时候会出现矩阵不可逆的情况,为什么呢? 矩阵可逆的条件是:1. 方阵 2. 满秩 X.t*X必然是方阵(nxmxmxn=nxn,最终行列数是原来的X矩阵的列数,也就是特征数),但是要满秩的话,由于线性代数的一个结论,X.t*X的秩不会比X大,而X的秩是样本数和特征数中较小的那一个,所以,如果样本数小于特征数的话,X.t*X就不会是可逆的

岭回归和lasso回归(转)

回归和分类是机器学习算法所要解决的两个主要问题.分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题.但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出. 那么,什么是线性回归,什么是非线性回归呢? 线性回归与非线性回归 前面说了,我们的回归模型是一个函数是吧,那么线性回归就是模型函数是由若干个基本函数线性加权得到的函数.也就是每一个基本函数前面都有一个权值来调和自己对

用R建立岭回归和lasso回归

1 分别使用岭回归和Lasso解决薛毅书第279页例6.10的回归问题 例6.10的问题如下: 输入例题中的数据,生成数据集,并做简单线性回归,查看效果 cement <- data.frame(X1 = c(7, 1, 11, 11, 7, 11, 3, 1, 2, 21, 1, 11, 10), X2 = c(26,     29, 56, 31, 52, 55, 71, 31, 54, 47, 40, 66, 68), X3 = c(6, 15, 8, 8, 6,     9, 17, 2

从最小二乘到岭回归(Ridge Regression)的深刻理解

岭回归是带二范数惩罚的最小二乘回归.ols方法中,X'X不能为0.当变量之间的相关性较强时,X'X很小,甚至趋于0.岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病态数据的拟合要强于OLS.本质是在自变量信息矩阵的主对角线元素上人为地加入一个非负因子.即:当λ=0时,b(λ)=b.b(λ)中各元素bi(λ)的绝对值均趋于不断变小(由于自变数间的相关,个别

R语言之岭回归

岭回归可以用来解决过度拟合的问题 一.线性模型的岭回归可使用ridge包中的linearRidge函数和MASS包中的lm.ridge函数> library(RSADBE)> data(OF)> LM <-lm.ridge(Y~poly(X,3),data = as.data.frame(OF),lambda=c(0,0.5,1,1.5,2,5,10,30))lambda为指定值 二.Logistic回归模型的岭回归可以使用ridge包中的logisticRidge函数拟合岭回归.

线性回归、岭回归和LASSO回归

尽管有些内容还是不懂,先截取的摘录. 1.变量选择问题:从普通线性回归到lasso 使用最小二乘法拟合的普通线性回归是数据建模的基本方法.其建模要点在于误差项一般要求独立同分布(常假定为正态)零均值.t检验用来检验拟合的模型系数的显著性,F检验用来检验模型的显著性(方差分析).如果正态性不成立,t检验和F检验就没有意义. 对较复杂的数据建模(比如文本分类,图像去噪或者基因组研究)的时候,普通线性回归会有一些问题:(1)预测精度的问题 如果响应变量和预测变量之间有比较明显的线性关系,最小二乘回归会