为什么分布式一定要有redis?

1、为什么使用redis

分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。因此,这个问题主要从性能和并发两个角度去答。

回答:如下所示,分为两点

(一)性能
如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。

题外话:忽然想聊一下这个迅速响应的标准。其实根据交互效果的不同,这个响应时间没有固定标准。不过曾经有人这么告诉我:"在理想状态下,我们的页面跳转需要在瞬间解决,对于页内操作则需要在刹那间解决。另外,超过一弹指的耗时操作要有进度提示,并且可以随时中止或取消,这样才能给用户最好的体验。"

那么瞬间、刹那、一弹指具体是多少时间呢?

根据《摩诃僧祗律》记载

一刹那者为一念,二十念为一瞬,二十瞬为一弹指,二十弹指为一罗预,二十罗预为一须臾,一日一夜有三十须臾。

那么,经过周密的计算,一瞬间为0.36 秒,一刹那有 0.018 秒.一弹指长达 7.2 秒。

(二)并发

如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。

2、使用redis有什么缺点

分析:大家用redis这么久,这个问题是必须要了解的,基本上使用redis都会碰到一些问题,常见的也就几个。

回答:主要是四个问题
(一)缓存和数据库双写一致性问题
(二)缓存雪崩问题
(三)缓存击穿问题
(四)缓存的并发竞争问题
这四个问题,我个人是觉得在项目中,比较常遇见的,具体解决方案,后文给出。

3、单线程的redis为什么这么快

分析:这个问题其实是对redis内部机制的一个考察。其实根据博主的面试经验,很多人其实都不知道redis是单线程工作模型。所以,这个问题还是应该要复习一下的。

回答:主要是以下三点
(一)纯内存操作
(二)单线程操作,避免了频繁的上下文切换
(三)采用了非阻塞I/O多路复用机制

题外话:我们现在要仔细的说一说I/O多路复用机制,因为这个说法实在是太通俗了,通俗到一般人都不懂是什么意思。博主打一个比方:小曲在S城开了一家快递店,负责同城快送服务。小曲因为资金限制,雇佣了一批快递员,然后小曲发现资金不够了,只够买一辆车送快递。

经营方式一
客户每送来一份快递,小曲就让一个快递员盯着,然后快递员开车去送快递。慢慢的小曲就发现了这种经营方式存在下述问题

几十个快递员基本上时间都花在了抢车上了,大部分快递员都处在闲置状态,谁抢到了车,谁就能去送快递
随着快递的增多,快递员也越来越多,小曲发现快递店里越来越挤,没办法雇佣新的快递员了
快递员之间的协调很花时间
综合上述缺点,小曲痛定思痛,提出了下面的经营方式

经营方式二
小曲只雇佣一个快递员。然后呢,客户送来的快递,小曲按送达地点标注好,然后依次放在一个地方。最后,那个快递员依次的去取快递,一次拿一个,然后开着车去送快递,送好了就回来拿下一个快递。

对比
上述两种经营方式对比,是不是明显觉得第二种,效率更高,更好呢。在上述比喻中:

每个快递员---------->每个线程
每个快递------------>每个socket(I/O流)
快递的送达地点------>socket的不同状态
客户送快递请求------>来自客户端的请求
小曲的经营方式------>服务端运行的代码
一辆车--------------->CPU的核数

于是我们有如下结论
1、经营方式一就是传统的并发模型,每个I/O流(快递)都有一个新的线程(快递员)管理。
2、经营方式二就是I/O多路复用。只有单个线程(一个快递员),通过跟踪每个I/O流的状态(每个快递的送达地点),来管理多个I/O流。

下面类比到真实的redis线程模型,如图所示

参照上图,简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。

需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。

4、redis的数据类型,以及每种数据类型的使用场景

分析:是不是觉得这个问题很基础,其实我也这么觉得。然而根据面试经验发现,至少百分八十的人答不上这个问题。建议,在项目中用到后,再类比记忆,体会更深,不要硬记。基本上,一个合格的程序员,五种类型都会用到。

回答:一共五种

(一)String
这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。

(二)hash
这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。

(三)list
使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。

(四)set
因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。

另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

(五)sorted set
sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。

5、redis的过期策略以及内存淘汰机制

分析:这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?

回答:
redis采用的是定期删除+惰性删除策略。

为什么不用定时删除策略?
定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.

定期删除+惰性删除是如何工作的呢?
定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。

于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。

采用定期删除+惰性删除就没其他问题了么?
不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。

在redis.conf中有一行配置

maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)
1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐
ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

6、redis和数据库双写一致性问题

分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。

回答:首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

7、如何应对缓存穿透和缓存雪崩问题

分析:这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。

回答:如下所示

缓存穿透,即×××故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

解决方案:
(一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试
(二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。
(三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。

缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

解决方案:
(一)给缓存的失效时间,加上一个随机值,避免集体失效。
(二)使用互斥锁,但是该方案吞吐量明显下降了。
(三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点

I 从缓存A读数据库,有则直接返回
II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。
III 更新线程同时更新缓存A和缓存B。

8、如何解决redis的并发竞争key问题

分析:这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。

回答:如下所示
(1)如果对这个key操作,不要求顺序
这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。
(2)如果对这个key操作,要求顺序
假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.
期望按照key1的value值按照 valueA-->valueB-->valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下

系统A key 1 {valueA 3:00}
系统B key 1 {valueB 3:05}
系统C key 1 {valueC 3:10}
那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。

其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。

9 总结
本文对redis的常见问题做了一个总结。大部分是博主自己在工作中遇到,以及以前面试别人的时候,爱问的一些问题。另外,不推荐大家临时抱佛脚,真正碰到一些有经验的工程师,其实几下就能把你问懵。最后,希望大家有所收获吧。

原文地址:http://blog.51cto.com/13732225/2125007

时间: 2024-10-06 01:03:44

为什么分布式一定要有redis?的相关文章

如何用分布式缓存服务实现Redis内存优化

Redis是一种支持Key-Value等多种数据结构的存储系统,其数据特性是"ALL IN MEMORY",因此优化内存十分重要.在对Redis进行内存优化时,先要掌握Redis内存存储的特性比如字符串,压缩编码,整数集合等,再根据数据规模和所用命令需求去调整,从而达到空间和效率的最佳平衡. 但随着数据大幅增长,开发人员需要面对重新优化内存所带来开发和数据迁移的双重成本也越来越高.Redis所有的数据都在内存中,那么,我们是否可以通过简便高效的方式去实现Redis内存优化呢? 答案当然

分布式日志2 用redis的队列写日志

using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Mvc; using ServiceStack.Redis; namespace 分布式日志 { public class MyExceptionFilter : HandleErrorAttribute { #region 用c#的队列 //public static Queue<Except

开源分布式搜索平台ELK+Redis+Syslog-ng实现日志实时搜索

logstash + elasticsearch + Kibana+Redis+Syslog-ng ElasticSearch是一个基于Lucene构建的开源,分布式,RESTful搜索引擎.设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便.支持通过HTTP使用JSON进行数据索引. logstash是一个应用程序日志.事件的传输.处理.管理和搜索的平台.你可以用它来统一对应用程序日志进行收集管理,提供 Web 接口用于查询和统计.其实logstash是可以被别的替换,比如常见

分布式缓存Memcache和Redis

引言 针对于现在计算机的CPU和网络设施,对应用程序来说,执行效率的瓶颈,已经不是代码的长度(实现同一个功能)和带宽了,而是,代码访问资源的过程,即:让我们的程序慢下来的罪魁祸首就是IO操作. 程序从硬盘上读取数据是一个非常花费时间的操作,因为我们现在所使用的硬盘是机械式的,你想机械的运行速度和电的速度,那是一个级别上的选手吗? 为了解决程序的瓶颈,人们提出了一种想法:使用空间换取时间.程序访问硬盘用的时间长,那就让数据放到内存中,让程序访问内存,这样不就节省了时间.这样确实剩下了我们程序获取数

为什么分布式一定要有Redis?

本文围绕以下几点进行阐述: 为什么使用 Redis 使用 Redis 有什么缺点 单线程的 Redis 为什么这么快 Redis 的数据类型,以及每种数据类型的使用场景 Redis 的过期策略以及内存淘汰机制 Redis 和数据库双写一致性问题 如何应对缓存穿透和缓存雪崩问题 如何解决 Redis 的并发竞争 Key 问题 为什么使用 Redis 我觉得在项目中使用 Redis,主要是从两个角度去考虑:性能和并发. 当然,Redis 还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其

分布式系列十二: Redis高级主题

持久化 Redis 支持持久化, 其持久化数据有两种方式. 两种可以同时使用. 如果同时使用, Reids 在重启时将使用 AOF 方式来还原数据. RDB 按照一定策略定时同步内存的数据到磁盘.文件名 dump.rdb snapshot: 快照复制. Redis在指定情况下触发快照: (1) 按配置的规则;(2) save 或 bgsave 命令执行;(3) flushall 命令; (4)执行复制 配置的规则: save seconds exchange 当在 seconds 指定的时间内,

Python3分布式爬虫(scrap+redis)基础知识和实战详解

背景 随着业务需求的变化,大规模爬虫遇到各种问题.python爬虫具有先天优势,社区资源比较齐全,各种框架也完美支持.爬虫性能也得到极大提升.本次分享从基础知识入手,涉及python 的两大爬虫框架pyspider.scrapy,并基于scrapy.scrapy-redis 做了分布式爬虫的介绍(直接粘贴的ppt截图)会涉及 redis.mongodb等相关知识. 一.前沿 1.1 爬虫是什么? 网络爬虫(又被称为网页蜘蛛,网络机器人),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本.

【Python3爬虫】学习分布式爬虫第一步--Redis分布式爬虫初体验

一.写在前面 之前写的爬虫都是单机爬虫,还没有尝试过分布式爬虫,这次就是一个分布式爬虫的初体验.所谓分布式爬虫,就是要用多台电脑同时爬取数据,相比于单机爬虫,分布式爬虫的爬取速度更快,也能更好地应对IP的检测.本文介绍的是利用Redis数据库实现的分布式爬虫,Redis是一种常用的菲关系型数据库,常用数据类型包括String.Hash.Set.List和Sorted Set,重要的是Redis支持主从复制,主机能将数据同步到从机,也就能够实现读写分离.因此我们可以利用Redis的特性,借助req

为什么分布式一定要有redis,redis的一些优缺点

2019-09-24 1.为什么使用redis 分析:博主觉得在项目中使用redis,主要是从两个角度去考虑:性能和并发.当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis.因此,这个问题主要从性能和并发两个角度去答.回答:如下所示,分为两点 (一)性能 如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存.这样,后面的请求就去缓存中读取,使得请