PCL 常用小知识

时间计算

pcl中计算程序运行时间有很多函数,其中利用控制台的时间计算

首先必须包含头文件 #include <pcl/console/time.h>

#include <pcl/console/time.h>

pcl::console::TicToc time;
time.tic();
//程序段
cout<<time.toc()/1000<<"s"<<endl;

pcl::PointCloud::Ptr和pcl::PointCloud的两个类相互转换

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>

pcl::PointCloud<pcl::PointXYZ>::Ptr cloudPointer(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ> cloud;
cloud = *cloudPointer;
cloudPointer = cloud.makeShared();

查找点云的x,y,z的极值

#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/common/common.h>
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("your_pcd_file.pcd", *cloud);
pcl::PointXYZ minPt, maxPt;
pcl::getMinMax3D (*cloud, minPt, maxPt);

如果知道需要保存点的索引,如何从原点云中拷贝点到新点云?

#include <pcl/io/pcd_io.h>
#include <pcl/common/impl/io.hpp>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloudOut(new pcl::PointCloud<pcl::PointXYZ>);
std::vector<int > indexs = { 1, 2, 5 };
pcl::copyPointCloud(*cloud, indexs, *cloudOut);

取已知索引之外的点云

pcl::PointIndices::Ptr inliers(new pcl::PointIndices);
inliers->indices = pointIdxRadiusSearchMap;
//已知索引的index
std::vector<int> pointIdxRadiusSearchMap;

pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(_laser3d_map);
extract.setIndices(inliers);
extract.setNegative(true);  //false: 筛选Index对应的点,true:过滤获取Index之外的点
extract.filter(*map_3d_2);

如何从点云里删除和添加点?

#include <pcl/io/pcd_io.h>
#include <pcl/common/impl/io.hpp>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ>("C:\office3-after21111.pcd", *cloud);
pcl::PointCloud<pcl::PointXYZ>::iterator index = cloud->begin();
cloud->erase(index);//删除第一个
index = cloud->begin() + 5;
cloud->erase(cloud->begin());//删除第5个
pcl::PointXYZ point = { 1, 1, 1 };
//在索引号为5的位置1上插入一点,原来的点后移一位
cloud->insert(cloud->begin() + 5, point);
cloud->push_back(point);//从点云最后面插入一点
std::cout << cloud->points[5].x;//输出1

如果删除的点太多建议用上面的方法拷贝到新点云,再赋值给原点云,如果要添加很多点,建议先resize,然后用循环向点云里的添加。

如何对点云进行全局或局部变换

#include <pcl/io/pcd_io.h>
#include <pcl/common/impl/io.hpp>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>
#include <pcl/common/transforms.h>

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile("path/.pcd",*cloud);
//全局变化
 //构造变化矩阵
Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
float theta = M_PI/4;   //旋转的度数,这里是45度
transform_1 (0,0) = cos (theta);  //这里是绕的Z轴旋转
transform_1 (0,1) = -sin(theta);
transform_1 (1,0) = sin (theta);
transform_1 (1,1) = cos (theta);

//transform_1 (0,2) = 0.3;   //这样会产生缩放效果
//transform_1 (1,2) = 0.6;
// transform_1 (2,2) = 1;

transform_1 (0,3) = 25; //这里沿X轴平移
transform_1 (1,3) = 30;
transform_1 (2,3) = 380;
pcl::PointCloud<pcl::PointXYZ>::Ptr transform_cloud1 (new pcl::PointCloud<pcl::PointXYZ>);
pcl::transformPointCloud(*cloud,*transform_cloud1,transform_1);  //不言而喻
//第一个参数为输入,第二个参数为输入点云中部分点集索引,第三个为存储对象,第四个是变换矩阵。

pcl::transformPointCloud(*cloud,pcl::PointIndices indices,*transform_cloud1,matrix);

链接两个点云字段(两点云大小必须相同)

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile("/home/yxg/pcl/pcd/mid.pcd",*cloud);
pcl::NormalEstimation<pcl::PointXYZ,pcl::Normal> ne;
ne.setInputCloud(cloud);
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZ>());
ne.setSearchMethod(tree);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals(new pcl::PointCloud<pcl::Normal>());
ne.setKSearch(8);

//ne.setRadisuSearch(0.3);
ne.compute(*cloud_normals);
pcl::PointCloud<pcl::PointNormal>::Ptr cloud_with_nomal (new pcl::PointCloud<pcl::PointNormal>);
pcl::concatenateFields(*cloud,*cloud_normals,*cloud_with_nomal);

删除无效点

#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/filters/filter.h>
#include <pcl/io/pcd_io.h>

using namespace std;
typedef pcl::PointXYZRGBA point;
typedef pcl::PointCloud<point> CloudType;

int main (int argc,char **argv)
{
    CloudType::Ptr cloud (new CloudType);
    CloudType::Ptr output (new CloudType);

     pcl::io::loadPCDFile(argv[1],*cloud);
     cout<<"size is:"<<cloud->size()<<endl;

     vector<int> indices;
     pcl::removeNaNFromPointCloud(*cloud,*output,indices);
     cout<<"output size:"<<output->size()<<endl;

     pcl::io::savePCDFile("out.pcd",*output);
     return 0;
}

xyzrgb格式转换为xyz格式的点云

#include <pcl/io/pcd_io.h>
#include <ctime>
#include <Eigen/Core>
#include <pcl/point_types.h>
#include <pcl/point_cloud.h>

using namespace std;
typedef pcl::PointXYZ point;
typedef pcl::PointXYZRGBA pointcolor;

int main(int argc,char **argv)
{
        pcl::PointCloud<pointcolor>::Ptr input (new pcl::PointCloud<pointcolor>);
        pcl::io::loadPCDFile(argv[1],*input);

        pcl::PointCloud<point>::Ptr output (new pcl::PointCloud<point>);
        int M = input->points.size();
        cout<<"input size is:"<<M<<endl;

        for (int i = 0;i <M;i++)
        {
                point p;
                p.x = input->points[i].x;
                p.y = input->points[i].y;
                p.z = input->points[i].z;
                output->points.push_back(p);
        }
        output->width = 1;
        output->height = M;

        cout<< "size is"<<output->size()<<endl;
        pcl::io::savePCDFile("output.pcd",*output);

}

flann kdtree 查询k近邻

//平均密度计算
pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;  //创建一个快速k近邻查询,查询的时候若该点在点云中,则第一个近邻点是其本身

kdtree.setInputCloud(cloud);
int k =2;
float everagedistance =0;
for (int i =0; i < cloud->size()/2;i++)
{
   vector<int> nnh ;
   vector<float> squaredistance;

   //pcl::PointXYZ p;
   //p = cloud->points[i];
   kdtree.nearestKSearch(cloud->points[i],k,nnh,squaredistance);
   everagedistance += sqrt(squaredistance[1]);
   //cout<<everagedistance<<endl;
}

everagedistance = everagedistance/(cloud->size()/2);
cout<<"everage distance is : "<<everagedistance<<endl;
#include <pcl/kdtree/kdtree_flann.h>

pcl::KdTreeFLANN<pcl::PointXYZ> kdtree; //创建KDtree
kdtree.setInputCloud (in_cloud);

pcl::PointXYZ searchPoint; //创建目标点,(搜索该点的近邻)
searchPoint.x = 1;
searchPoint.y = 2;
searchPoint.z = 3;

//查询近邻点的个数
 int k = 10; //近邻点的个数
std::vector<int> pointIdxNKNSearch(k); //存储近邻点集的索引
std::vector<float>pointNKNSquareDistance(k); //近邻点集的距离
 if (kdtree.nearestKSearch(searchPoint,k,pointIdxNKNSearch,pointNKNSquareDistance)>0)
{
       for (size_t i = 0; i < pointIdxNKNSearch.size (); ++i)
             std::cout << "    "  <<   in_cloud->points[ pointIdxNKNSearch[i] ].x
                            << " " << in_cloud->points[ pointIdxNKNSearch[i] ].y
                            << " " <<in_cloud->points[ pointIdxNKNSearch[i] ].z
                           << " (squared distance: " <<pointNKNSquareDistance[i] << ")<<std::endl;
}

//半径为r的近邻点
float radius = 40.0f;  //其实是求的40*40距离范围内的点
std::vector<int> pointIdxRadiusSearch;  //存储的对应的平方距离
std::vector<float> a;
if ( kdtree.radiusSearch (searchPoint, radius, pointIdxRadiusSearch, a) > 0 )
{
      for (size_t i = 0; i < pointIdxRadiusSearch.size (); ++i)
              std::cout << "    "  <<   in_cloud->points[ pointIdxRadiusSearch[i] ].x
                            << " " <<in_cloud->points[ pointIdxRadiusSearch[i] ].y
                            << " " << in_cloud->points[ pointIdxRadiusSearch[i] ].z
                            << " (squared distance: " <<a[i] << ")" << std::endl;
}

关于ply文件

后缀命名为.ply格式文件,常用的点云数据文件。ply文件不仅可以存储数据,而且可以存储网格数据. 用emacs打开一个ply文件,观察表头,如果表头element face的值为0,则表示该文件为点云文件,如果element face的值为某一正整数N,则表示该文件为网格文件,且包含N个网格.所以利用pcl读取 ply 文件,不能一味用pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PintT>)来读取。在读取ply文件时候,首先要分清该文件是点云还是网格类文件。如果是点云文件,则按照一般的点云类去读取即可,官网例子,就是这样。如果ply文件是网格类,则需要

pcl::PolygonMesh mesh;
pcl::io::loadPLYFile(argv[1],mesh);
pcl::io::savePLYFile("result.ply", mesh);

读取。(官网例子之所以能成功,是因为它对模型进行了细分处理,使得网格变成了点)

计算点的索引

例如sift算法中,pcl无法直接提供索引(主要原因是sift点是通过计算出来的,在某些不同参数下,sift点可能并非源数据中的点,而是某些点的近似),若要获取索引,则可利用以下函数:

void getIndices (pointcloud::Ptr cloudin, pointcloud keypoints, pcl::PointIndices::Ptr indices)
{
    pcl::KdTreeFLANN<pcl::PointXYZ> kdtree;
    kdtree.setInputCloud(cloudin);
    std::vector<float>pointNKNSquareDistance; //近邻点集的距离
    std::vector<int> pointIdxNKNSearch;

    for (size_t i =0; i < keypoints.size();i++)
    {
        kdtree.nearestKSearch(keypoints.points[i],1,pointIdxNKNSearch,pointNKNSquareDistance);
        // cout<<"the distance is:"<<pointNKNSquareDistance[0]<<endl;
        // cout<<"the indieces is:"<<pointIdxNKNSearch[0]<<endl;

        indices->indices.push_back(pointIdxNKNSearch[0]);

   }

}

其思想就是:将原始数据插入到flann的kdtree中,寻找keypoints的最近邻,如果距离等于0,则说明是同一点,提取索引即可.

计算质心

Eigen::Vector4f centroid;  //质心
pcl::compute3DCentroid(*cloud_smoothed,centroid); //估计质心的坐标

从网格提取顶点(将网格转化为点)

#include <pcl/io/io.h>
#include <pcl/io/pcd_io.h>
#include <pcl/io/obj_io.h>
#include <pcl/PolygonMesh.h>
#include <pcl/point_cloud.h>
#include <pcl/io/vtk_lib_io.h>//loadPolygonFileOBJ所属头文件;
#include <pcl/io/vtk_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/point_types.h>
using namespace pcl;
int main(int argc,char **argv)
{
        pcl::PolygonMesh mesh;
        //pcl::io::loadPolygonFileOBJ(argv[1], mesh);
        pcl::io::loadPLYFile(argv[1],mesh);
        pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
        pcl::fromPCLPointCloud2(mesh.cloud, *cloud);
        pcl::io::savePCDFileASCII("result.pcd", *cloud);
return 0;
}

以上代码可以从.obj或.ply面片格式转化为点云类型。

 

原文地址:https://www.cnblogs.com/flyinggod/p/9478000.html

时间: 2024-10-15 05:23:21

PCL 常用小知识的相关文章

VC常用小知识

(1) 如何通过代码获得应用程序主窗口的 指针?主窗口的 指针保存在CWinThread::m_pMainWnd中,调用AfxGetMainWnd实现.AfxGetMainWnd() ->ShowWindow(SW_SHOWMAXMIZED)//使程序最大化. (2) 确定应用程序的路径Use GetModuleFileName 获得应用程序的路径,然后去掉可执行文件名.Example:TCHARexeFullPath[MAX_PATH] // MAX_PATH在API中定义了吧,好象是128G

进程常用小知识汇总

spring secrity 一些常用小知识

1.在JSP页面获取当前登录的用户名的方法 首先引入taglib:<%@ taglib prefix="sec" uri="http://www.springframework.org/security/tags" %> 然后在jsp页面中使用下面的方法就可以获取到用户名了:<sec:authentication property="name"/>

php tp5常用小知识

1. tp5 获取当前访问的模块名,控制器名,方法名 $request= \think\Request::instance(); $module = $request->module(); //模块名 $controller = $request->controller(); //控制器名 $action = $request->action(); //方法名 2.获取app/config.php 里面的内容 $path = Config::get('jx_path'); 注意,先要引入

iOS 知识-常用小技巧大杂烩

iOS 知识-常用小技巧大杂烩 1,打印View所有子视图 po [[self view]recursiveDescription] 2,layoutSubviews调用的调用时机 * 当视图第一次显示的时候会被调用 * 当这个视图显示到屏幕上了,点击按钮 * 添加子视图也会调用这个方法 * 当本视图的大小发生改变的时候是会调用的 * 当子视图的frame发生改变的时候是会调用的 * 当删除子视图的时候是会调用的 3,NSString过滤特殊字符 // 定义一个特殊字符的集合 NSCharact

html、css中常用的小知识记录

好多东西过一段时间不用就忘记了,为此写了这篇文章,用来记录每次想不起来的小知识! 1.鼠标停留显示提示,使用title .如:title

MySQL不常用、易忽略的小知识

笔者从事开发也有一段时间了,关于数据库方面的一些小知识在这里总结一下 1.count(*),count(1)与count(column)区别 count(*)对行的数目进行计算,包含NULL count(1)对行的数目进行计算,包含NULL count(column)对特定的列的值具有的行数进行计算,不包含NULL值. 所以count(1)这个用法和count(*)的结果是一样的. 注意: 如果表没有主键,那么count(1)比count(*)快. 如果有主键,那么count(主键,联合主键)比

12个css小知识

1.CSS的color属性并非只能用于文本显示对于CSS的color属性,相信所有Web开发人员都使用过.如果你并不是一个特别有经验的程序员,我相信你未必知道color属性除了能用在文本显示,还可以用作其它地方.它可以把页面上的所有的东西都变颜色.比如:无法显示的图片的alt文字list元素的边框无序list元素前面的小点有序list元素前面的数字还有hr元素 2.CSS里的visibility属性有个collapse属性值:collapse对于CSS里的visibility属性,相信你用过不下

你不一定知道的几个前端小知识

1 大家都知道js在进行小数运算时会有丢失精度问题(其他语言也是),比如: 0.1+0.2 //0.30000000000000004 有一种比较快捷的方式是先把小数乘以10的整数倍,然后再运算,如: (0.1*10+0.2*10)/10 //0.3 但是这种方式也不是100%准确的,乘以整百也可能精度丢失,比如: 2177.74*100 //217773.99999999997 所以常用的几种处理方式有: 把小数转化为字符串,拆分整数部分和小数部分分别计算,然后再把结果进行拼接; 先乘10的整