《A First Course in Probability》-chape1-组合分析-二项式定理

二项式系数的概念给人最直观的概念就是,这里有n个物品,分成两组,其中一组的数量是i的所有组合情况。

它的证明过程既可以从组合分析的角度,也可以从数学归纳的角度,由于数学归纳涉及到计算比较困难,我们这里就呈现二项式定理的数学归纳的证明方法。

定理证明的过程中用到了如下的二项式系数恒等关系,是基于递推求二项式系数的一个方法:

基于对二项式系数和二项式定理的理解,我们下面可将其推广到多项式系数和多项式定理。其证明过程是类似的。

时间: 2024-10-26 21:47:50

《A First Course in Probability》-chape1-组合分析-二项式定理的相关文章

组合数学及其应用——二项式定理

常见的指数是形式的二项式定理我们是熟悉的,即对于(x+y)的n次幂,n取正整数,我们能将其展开成有限项数的多项式,但对于n取负数.分数,二项式是否成立了呢? 1676年Newton拓展二项式定理,即证明了如下定理: 当(x+y)的指数取正整数时,就是拓展二项式定理的一种情况. 指数取正整数情况的证明,可以考虑用数学归纳法或者组合分析来证明,笔者在<A First Course in Probability>中呈现过数学归纳的证法,这里便不再赘述. 而对于推广形式的二项系数定理的证明,在高级微积

《A First Course in Probability》-chaper1-组合分析

在概率论问题中求解基本事件.某个事件的可能情况数要涉及到组合分析. 而这一部分主要涉及到简单的计数原理和二项式定理.多项式定理. 我们从一个简单的实例入手. 方程的整数解个数: Tom喜欢钓鱼,一直他在r天中钓了n条鱼,设xi表示Tom第i天钓鱼的数目,这里我们,很显然时间是有序排列的,因此我们得到一个r元向量<x1,x2,x3……,xr>,那么满足上述条件,即x1+x2+x3+……+xr=n的r元组合.有多少个呢? 分析:首先我们刻意的将问题限制一下,假设每天Tom都不是空手而归,那么通过插

[NOIP2011] 计算系数(二项式定理)

题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开. 输出格式: 输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果. 输入输出样例 输入样例#1: 1 1 3 1 2 输出样例#1: 3 说明 [数据范围] 对于30% 的数据,有 0 ≤k ≤10 : 对于50% 的

uva 11181 - Probability|Given

条件概率公式:P( A|B ) = P( AB ) / P( B ) 表示在事件B发生的前提下,事件A发生的概率: 对本道题: 设事件E:r个人买了东西: 事件Ei:第i个人买了东西: 则要求的是P( Ei | E ); 计算P( E ) 用全概率公式即可,采用递归枚举出所有r个人买东西的情况,然后计算出其总的概率: 计算P( Ei ) 就是在上面递归枚举的过程中将选上第i个人的情况的概率加起来:(在这种情况下,其概率就是:在E发生的前提下的概率) 代码: #include<cstdio> #

UVA 11346 - Probability 数学积分

Consider rectangular coordinate system and point L(X, Y ) which is randomly chosen among all pointsin the area A which is de?ned in the following manner: A = {(x, y)|x ∈ [−a; a];y ∈ [−b; b]}. What isthe probability P that the area of a rectangle that

Introduction to Probability (5) Continus random variable

CONTINUOUS RANDOM VARIABLES AND PDFS  连续的随机变量,顾名思义.就是随机变量的取值范围是连续的值,比如汽车的速度.气温.假设我们要利用这些參数来建模.那么就须要引入连续随机变量. 假设随机变量X是连续的,那么它的概率分布函数能够用一个连续的非负函数来表示,这个非负函数称作连续随机变量的概率密度函数(probability density function).并且满足: 假设B是一个连续的区间,那么: watermark/2/text/aHR0cDovL2Js

HDU2131 Probability【水题】

Probability Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 5205    Accepted Submission(s): 2597 Problem Description Mickey is interested in probability recently. One day , he played a game whi

Uva 11346 Probability 积分

化成反比函数求积分 G - Probability Time Limit: 1 sec Memory Limit: 16MB Consider rectangular coordinate system and point L(X,Y) which is randomly chosen among all points in the area A which is defined in the following manner: A = {(x,y) | x is from interval [

基本概率分布Basic Concept of Probability Distributions 4: Negative Binomial Distribution

PDF version PMF Suppose there is a sequence of independent Bernoulli trials, each trial having two potential outcomes called "success" and "failure". In each trial the probability of success is $p$ and of failure is $(1-p)$. We are obs